<< Chapter < Page Chapter >> Page >
(Blank Abstract)

I/o and i/s/o representation of siso linear systems

I/O I/S/O
variables: ( u , y ) variables: ( u , x , y )
t q y t t p u t , n deg q deg p t x t A x t B u t , y t C x t D u t
u t , y t x t n , A B C D n 1 n 1
Impulse Response
t q h t t p δ t h t D δ t C A t B , t 0
H s h t p s q s H s D C s I A B
Poles - characteristic roots - eigenfrequencies
λ i , q λ i 0 , I 1 , , n λ i I A 0
Zeros
H z i 0 p z i , 1 , , n z i I A -B -C -D 0
Matrix exponential
A t k 0 t k k A k t A t A A t A t A
A t s I A
BIBO stability
y h u , requirement
u Norm u u
h 1 t 0 h t
λ i 0 poles LHP
Solution in the time domain
y t y zi t y zs t x t x zi t x zs t
y t I 1 n c i λ i t τ 0 - t h t τ u τ x t A t x 0 - τ 0 - t A t τ B u τ
y t C A t x 0 - τ 0 - t D δ t τ C A t τ B u τ , h · D δ t τ C A t τ B
y t C A t x 0 - τ 0 - t h t τ u τ
Laplace Transform: Solution in the frequency domain
Y s r s q s H s U s X s s I A x 0 - s I A B U s
Y s C s I A x 0 - D C s I A B U s , H s D C s I A B

Definition of state from i/o description

Let H s D p s q s , deg p deg q . Define w so that t q w t u t , y t t p w D u t x T w w 1 w n 1 n , n : degree of q s .

Various responses

Zero-input or free response
response due to initial conditions alone.
Zero-state or forced response
response due to input (forcing function) alone (zero initial condition).
Homogeneous solution
general form of free-response (arbitrary initial conditions).
Particular solution
forced response.
Steady-state response
response obtained for large balues of time T .
Transient response
full response minus steady minus state response.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, State space systems. OpenStax CNX. Jan 22, 2004 Download for free at http://cnx.org/content/col10143/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'State space systems' conversation and receive update notifications?

Ask