<< Chapter < Page Chapter >> Page >
This module teaches the method of solving quadratic equations by factoring.

Consider the equation 4x 2 + 14 x 60 = 0 size 12{4x rSup { size 8{2} } +"14"x - "60"=0} {} . This is not an algebraic generalization, but an equation to be solved for x : that is, it asks the question “What x value, or values, will make this equation true?” We will be solving such equations in three different ways. The fastest and easiest is by factoring.

Using the techniques discussed above, we can rewrite this problem as follows. (Try it for yourself!)

4x 2 + 14 x 60 = 0 size 12{4x rSup { size 8{2} } +"14"x - "60"=0} {} Original form

2 2x 5 x + 6 = 0 size 12{2 left (2x - 5 right ) left (x+6=0 right )} {} Factored form

The second form may look more complicated than what we started with. But consider what this equation says. There are three numbers: 2, 2x 5 size 12{2x - 5} {} , and x + 6 size 12{x+6} {} . The equation says that when you multiply these three numbers, you get 0. Ask yourself this crucial question: How can you multiply numbers and get the answer 0 ?

The only way it can happen is if one of the numbers is 0. Take a moment to convince yourself of this: if several numbers multiply to give 0, one of those numbers must be 0.

So we have three possibilities.

2 = 0 size 12{2=0} {} 2x 5 = 0 size 12{2x - 5=0} {} x + 6 = 0 size 12{x+6=0} {}
( it just isn't ) size 12{ \( "it just isn't" \) } {} x = 2 1 2 size 12{x=2 { { size 8{1} } over { size 8{2} } } } {} x = 6 size 12{x= - 6} {}

The moral of the story is: when a quadratic equation is factored, it can be solved easily. In this case, the equation 4x 2 + 14 x 60 = 0 size 12{4x rSup { size 8{2} } +"14"x - "60"=0} {} has two valid solutions, x = 2 1 2 size 12{x=2 { { size 8{1} } over { size 8{2} } } } {} and x = 6 size 12{x= - 6} {} .

Consider this example:

x 2 9x + 20 = 6 size 12{x rSup { size 8{2} } - 9x+"20"=6} {}

A common mistake is to solve it like this.

x 2 9x + 20 = 6 size 12{x rSup { size 8{2} } - 9x+"20"=6} {} , solved incorrectly

  • ( x 4 ) ( x 5 ) = 6 size 12{ \( x - 4 \) \( x - 5 \) =6} {}
  • x 4 = 6 size 12{ left (x - 4 right )=6} {}
    • x = 10  ✗ size 12{x="10"} {}
  • x 5 = 6 size 12{ left (x - 5 right )=6} {}
    • x = 11  ✗ size 12{x="11"} {}

All looks good, doesn’t it? The factoring was correct. But if you try x = 10 size 12{x="10"} {} or x = 11 size 12{x="11"} {} in the original equation, you will find that neither one works. What went wrong?

The factoring was correct, but the next step was wrong. Just because ( x 4 ) ( x 5 ) = 6 size 12{ \( x - 4 \) \( x - 5 \) =6} {} does not mean that either x 4 size 12{ left (x - 4 right )} {} or x 5 size 12{ left (x - 5 right )} {} has to be 6. There are lots of ways for two numbers to multiply to give 6. This trick only works for 0!

x 2 9x + 20 = 6 size 12{x rSup { size 8{2} } - 9x+"20"=6} {} , solved correctly

  • x 2 9x + 14 = 0 size 12{x rSup { size 8{2} } - 9x+"14"=0} {}
  • x 7 x 2 = 0 size 12{ left (x - 7 right ) left (x - 2 right )=0} {}
  • x 7 = 0 size 12{ left (x - 7 right )=0} {}
    • x = 7  ✓ size 12{x=7} {}
  • x 2 = 0 size 12{ left (x - 2 right )=0} {}
    • x = 2  ✓ size 12{x=2} {}

You may want to confirm for yourself that these are the correct solutions.

Moral: When solving quadratic equations, always begin by moving everything to one side of the equation , leaving only a 0 on the other side. This is true regardless of which of the three methods you use.

x 2 + 14 x + 49 = 0 size 12{x rSup { size 8{2} } +"14"x+"49"=0} {}

  • x + 7 2 = 0 size 12{ left (x+7 right ) rSup { size 8{2} } =0} {}
  • x = 7 size 12{x= - 7} {}

Moral : If the left side factors as a perfect square, the quadratic equation has only one solution.

Not all quadratic functions can be factored. This does not mean they have no solutions! If the function cannot be factored, we must use other means to find the solutions.

Questions & Answers

I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
What would be the best educational aid(s) for gifted kids/savants?
Heidi Reply
treat them normal, if they want help then give them. that will make everyone happy
Saurabh
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Quadratic functions. OpenStax CNX. Mar 10, 2011 Download for free at http://cnx.org/content/col11284/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Quadratic functions' conversation and receive update notifications?

Ask