<< Chapter < Page Chapter >> Page >

Introduction

Our study of phase equilibrium between the liquid and gas phases has opened a door to a world of information about how molecules interact in a liquid. Recall that we would like to relate the properties of individual molecules to the properties of bulk samples of a substance. Our studies of the properties of gases were a little disappointing towards this goal. We found that the properties of a mole of gas molecules are the same, accurately predicted for all substances by the Ideal Gas Law except under extreme conditions. This means that the properties of individual molecules are largely irrelevant to the properties of gases.

By contrast, we now know that each liquid has a characteristic vapor pressure at each temperature and a characteristic boiling point at each pressure, and these properties differ from one substance to the next. These differences must be related to differences in the properties of the individual molecules in the liquid phase. Furthermore, we developed a model for phase equilibrium based on a dynamic view. The rate of condensation must equal to the rate of evaporation at equilibrium. And the rate of evaporation must differ from one liquid to the next and must also vary as the temperature changes. These experimental clues will help us develop a model to account for the differences in physical properties arising from differences in the attractions of individual molecules in the liquid phase.

In this study, we will further develop the concept of phase equilibrium, including solids in our discussion. We will experimentally determine the conditions under which one of the phases is the most stable and conditions under which two or all three of the phases are stable at equilibrium. We will then build a model to describe the interactions between molecules, accounting for which types of molecules have strong attractions and which have weaker attractions.

Observation 1: liquid-vapor phase diagram

In the previous study, we examined experimental data on the vapor pressures of different liquids as a function of their temperature. We found that the vapor pressure of a liquid depends strongly on what the liquid substance is. These variations reflect the differing "volatilities" of the liquids: those with higher vapor pressures are more volatile.

In addition, there is a very interesting correlation between the volatility of a liquid and the boiling point of the liquid. Without exception, the substances with high boiling points have low vapor pressures and vice versa. If we look more closely at the connection between boiling point and vapor pressure, we can find an important relationship.

Let’s consider the specific case of water, with its vapor pressure given in Figure 1. We know from experiment that water boils at 1 atm pressure at 100 ºC. Note in Figure 1 that, at 100 ºC, the vapor pressure of water is 760 torr = 1 atm. Thus, the boiling point of water at 1 atm is the temperature at which the vapor pressure of water is equal to 1 atm. This is a general result. The boiling point of each liquid at 1 atm pressure is equal to the temperature at which the vapor pressure of that liquid is equal to 1 atm.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Concept development studies in chemistry 2013. OpenStax CNX. Oct 07, 2013 Download for free at http://legacy.cnx.org/content/col11579/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Concept development studies in chemistry 2013' conversation and receive update notifications?

Ask