<< Chapter < Page Chapter >> Page >

Introduction

Our study of phase equilibrium between the liquid and gas phases has opened a door to a world of information about how molecules interact in a liquid. Recall that we would like to relate the properties of individual molecules to the properties of bulk samples of a substance. Our studies of the properties of gases were a little disappointing towards this goal. We found that the properties of a mole of gas molecules are the same, accurately predicted for all substances by the Ideal Gas Law except under extreme conditions. This means that the properties of individual molecules are largely irrelevant to the properties of gases.

By contrast, we now know that each liquid has a characteristic vapor pressure at each temperature and a characteristic boiling point at each pressure, and these properties differ from one substance to the next. These differences must be related to differences in the properties of the individual molecules in the liquid phase. Furthermore, we developed a model for phase equilibrium based on a dynamic view. The rate of condensation must equal to the rate of evaporation at equilibrium. And the rate of evaporation must differ from one liquid to the next and must also vary as the temperature changes. These experimental clues will help us develop a model to account for the differences in physical properties arising from differences in the attractions of individual molecules in the liquid phase.

In this study, we will further develop the concept of phase equilibrium, including solids in our discussion. We will experimentally determine the conditions under which one of the phases is the most stable and conditions under which two or all three of the phases are stable at equilibrium. We will then build a model to describe the interactions between molecules, accounting for which types of molecules have strong attractions and which have weaker attractions.

Observation 1: liquid-vapor phase diagram

In the previous study, we examined experimental data on the vapor pressures of different liquids as a function of their temperature. We found that the vapor pressure of a liquid depends strongly on what the liquid substance is. These variations reflect the differing "volatilities" of the liquids: those with higher vapor pressures are more volatile.

In addition, there is a very interesting correlation between the volatility of a liquid and the boiling point of the liquid. Without exception, the substances with high boiling points have low vapor pressures and vice versa. If we look more closely at the connection between boiling point and vapor pressure, we can find an important relationship.

Let’s consider the specific case of water, with its vapor pressure given in Figure 1. We know from experiment that water boils at 1 atm pressure at 100 ºC. Note in Figure 1 that, at 100 ºC, the vapor pressure of water is 760 torr = 1 atm. Thus, the boiling point of water at 1 atm is the temperature at which the vapor pressure of water is equal to 1 atm. This is a general result. The boiling point of each liquid at 1 atm pressure is equal to the temperature at which the vapor pressure of that liquid is equal to 1 atm.

Questions & Answers

how to create a software using Android phone
Wiseman Reply
how
basra
what is the difference between C and C++.
Yan Reply
what is software
Sami Reply
software is a instructions like programs
Shambhu
what is the difference between C and C++.
Yan
yes, how?
Hayder
what is software engineering
Ahmad
software engineering is a the branch of computer science deals with the design,development, testing and maintenance of software applications.
Hayder
who is best bw software engineering and cyber security
Ahmad
Both software engineering and cybersecurity offer exciting career prospects, but your choice ultimately depends on your interests and skills. If you enjoy problem-solving, programming, and designing software syste
Hayder
what's software processes
Ntege Reply
I haven't started reading yet. by device (hardware) or for improving design Lol? Here. Requirement, Design, Implementation, Verification, Maintenance.
Vernon
I can give you a more valid answer by 5:00 By the way gm.
Vernon
it is all about designing,developing, testing, implementing and maintaining of software systems.
Ehenew
hello assalamualaikum
Sami
My name M Sami I m 2nd year student
Sami
what is the specific IDE for flutter programs?
Mwami Reply
jegudgdtgd my Name my Name is M and I have been talking about iey my papa john's university of washington post I tagged I will be in
Mwaqas Reply
yes
usman
how disign photo
atul Reply
hlo
Navya
hi
Michael
yes
Subhan
Show the necessary steps with description in resource monitoring process (CPU,memory,disk and network)
samuel Reply
What is software engineering
Tafadzwa Reply
Software engineering is a branch of computer science directed to writing programs to develop Softwares that can drive or enable the functionality of some hardwares like phone , automobile and others
kelvin
if any requirement engineer is gathering requirements from client and after getting he/she Analyze them this process is called
Alqa Reply
The following text is encoded in base 64. Ik5ldmVyIHRydXN0IGEgY29tcHV0ZXIgeW91IGNhbid0IHRocm93IG91dCBhIHdpbmRvdyIgLSBTdGV2ZSBXb3puaWFr Decode it, and paste the decoded text here
Julian Reply
what to do you mean
Vincent
hello
ALI
how are you ?
ALI
What is the command to list the contents of a directory in Unix and Unix-like operating systems
George Reply
how can i make my own software free of cost
Faizan Reply
like how
usman
hi
Hayder
The name of the author of our software engineering book is Ian Sommerville.
Doha Reply
what is software
Sampson Reply
the set of intruction given to the computer to perform a task
Noor
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Concept development studies in chemistry 2013. OpenStax CNX. Oct 07, 2013 Download for free at http://legacy.cnx.org/content/col11579/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Concept development studies in chemistry 2013' conversation and receive update notifications?

Ask