<< Chapter < Page Chapter >> Page >
The Schroeder reverberator uses parallel comb filters followed by cascaded all-pass filters to produce an impulse response that closely resembles a physical reverberant environment. Learn how to implement the Schroeder reverberator block diagram as a digital filter in LabVIEW, and apply the filter to an audio .wav file.
This module refers to LabVIEW, a software development environment that features a graphical programming language. Please see the LabVIEW QuickStart Guide module for tutorials and documentation that will help you:
•Apply LabVIEW to Audio Signal Processing
•Get started with LabVIEW
•Obtain a fully-functional evaluation edition of LabVIEW

Introduction

Reverberation is a property of concert halls that greatly adds to the enjoyment of a musical performance. The on-stage performer generates sound waves that propagate directly to the listener's ear. However, sound wavesalso bounce off the floor, walls, ceiling, and back wall of the stage, creating myriad copies of the direct sound that are time-delayed and reduced in intensity.

In the prerequisite module Reverberation , you learned how the comb filter structure can efficiently create replicas of a direct-path signal that are time delayed and reduced in intensity. However,the comb filter produces replicas that are time delayed by exactly the same amount, leading to the sensation of a pitched tone superimposed on the signal. Refer back to Reverberation to hear an audio demonstration of this effect. Put another way, the impulse response of the comb filter contains impulses withidentical spacing in time, which is not realistic.

The Schroeder reverberator (see "References" section) uses a combination of comb filters and all-pass filters to produce an impulse response that more nearly resembles the random nature of a physical reverberant environment.

This module introduces you to the Schroeder reverberator and guides you through the implementation process in LabVIEW. As a preview of what can be achieved, watch the screencast video to see and hear a short demonstration of a LabVIEW VI that implements the Schroeder reverberator.The speech clip used in the video is available here: speech.wav (audio courtesy of the Open Speech Repository, www.voiptroubleshooter.com/open_speech ; the sentences are two of the many phonetically balanced Harvard Sentences , an important standard for the speech processing community).

[video] Demonstration of the Schroeder reverberator as implemented in LabVIEW

Structure of the schroeder reverberator

The screencast video presents the structure of the Schroeder reverberator and describes the rationale for its design.

[video] Structure of the Schroeder reverberator and rationale for its design

All-pass filter

The Schroeder reverberator uses all-pass filters to increase the pulse density produced by the parallel comb filters. You perhaps are familiar with the frequency response of an all-pass filter: its magnituderesponse is unity (flat) for all frequencies, and its phase response varies with frequency. For example, the all-pass filter is used to create a variable fractional delay as described in Karplus-Strong Plucked String Algorithm with Improved Pitch Accuracy .

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Musical signal processing with labview -- sound spatialization and reverberation. OpenStax CNX. Nov 07, 2007 Download for free at http://cnx.org/content/col10485/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Musical signal processing with labview -- sound spatialization and reverberation' conversation and receive update notifications?

Ask