<< Chapter < Page Chapter >> Page >

From an intuitive standpoint it would seem that a flat magnitude response in the frequency domain should correspond to an impulse response (time-domain) containing only a single delta function (recall that the impulse function anda constant-valued function constitute a Fourier transform pair). However, the all-pass filter's impulse response is actually a large negative impulse followed by a series of positive decaying impulses.

In this section, derive the transfer function and difference equation of the all-pass filter structure shown in . Note that the structure is approximately of the same level of complexity as the comb filter: it contains a delay line of N samples and an extra gainelement and summing element.

All-pass filter structure

Determine the transfer function H ( z ) MathType@MTEF@5@5@+=feaagaart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYb1uaebbnrfifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaacIcacaWG6bGaaiykaaaa@3861@ for the all-pass filter structure of .

H ( z ) = g + z N 1 g z N MathType@MTEF@5@5@+=feaagaart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYb1uaebbnrfifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaacIcacaWG6bGaaiykaiabg2da9maalaaabaGaeyOeI0Iaam4zaiabgUcaRiaadQhadaahaaWcbeqaaiabgkHiTiaad6eaaaaakeaacaaIXaGaeyOeI0Iaam4zaiaadQhadaahaaWcbeqaaiabgkHiTiaad6eaaaaaaaaa@44A8@

Based on your result for the previous exercise, write the difference equation for the all-pass filter.

y ( n ) = g x ( n ) + x ( n N ) + g y ( n N ) MathType@MTEF@5@5@+=feaagaart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYb1uaebbnrfifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiaacIcacaWGUbGaaiykaiabg2da9iabgkHiTiaadEgacaWG4bGaaiikaiaad6gacaGGPaGaey4kaSIaamiEaiaacIcacaWGUbGaeyOeI0IaamOtaiaacMcacqGHRaWkcaWGNbGaamyEaiaacIcacaWGUbGaeyOeI0IaamOtaiaacMcaaaa@4B71@

All-pass filter impulse response

As described in the video of , two all-pass filters are placed in cascade (series) with the summed output of the parallel comb filters. An understanding of the all-pass filter impulse response reveals why a cascade connection increases the pulse density of thecomb filter in such a way as to emulate the effect of natural reverberation.

The screencast video derives the impulse response of the all-pass filter; the loop time and reverb time of the all-pass filter are also presented.

[video] Derivation of the all-pass filter impulse response

The screencast video demonstrates the sound of the all-pass filter impulse response compared to that of the comb filter. Moreover, the audible effect of increasing the comb filter pulse density with an all-pass filter is also demonstrated in the video.

Download the LabVIEW VI presented in the video: apfdemo.zip Refer to TripleDisplay to install the front-panel indicator required by the VI.

[video] Audio demonstration of the all-pass filter impulse response combined with comb filter

Project: implement the schroeder reverberator in labview

As described in the screencast video, two all-pass filters are placed in cascade (series) with the summed output of four parallel comb filters. The video of explains how the all-pass filter "fattens up" each comb filter output impulse with high density pulses that rapidly decay to zero. Selecting mutually-prime numbers for the loop times ensures that the comb filterimpulses do not overlap too soon, which further increases the effect of randomly-spaced impulses.

The table in lists the required reverb times (T60) and loop times (tau) of the Schroeder reverberator. Note that the comb filters all use the same value (the desired overall reverb time).

Reverb time and loop time values for the comb filters and all-pass filters of the Schroeder reverberator

The screencast video provides everything you need to know to build your own LabVIEW VI for the Schroeder reverberator.

Download the .wav reader subVI mentioned in the video : WavRead.vi .

[video] Suggested LabVIEW techniques to build your own Schroeder reverberator

References

  • Schroeder, M.R., and B.F. Logan, "Colorless Artificial Reverberation," Journal of the Audio Engineering Society 9(3):192, 1961.
  • Schroeder, M.R., "Natural Sounding Artificial Reverberation," Journal of the Audio Engineering Society 10(3):219-223, 1962.
  • Moore, F.R., "Elements of Computer Music," Prentice-Hall, 1990, ISBN 0-13-252552-6.
  • Dodge, C., and T.A. Jerse, "Computer Music: Synthesis, Composition, and Performance," 2nd ed., Schirmer Books, 1997, ISBN 0-02-864682-7.

Questions & Answers

1. Discuss the processes involved during exchange of fluids between intra and extracellular space.
Mustapha Reply
what are components of cells
ofosola Reply
twugzfisfjxxkvdsifgfuy7 it
Sami
58214993
Sami
what is a salt
John
the difference between male and female reproduction
John
what is computed
IBRAHIM Reply
what is biology
IBRAHIM
what is the full meaning of biology
IBRAHIM
what is biology
Jeneba
what is cell
Kuot
425844168
Sami
what is biology
Inenevwo
what is sexual reproductive system
James
what is cytoplasm
Emmanuel Reply
structure of an animal cell
Arrey Reply
what happens when the eustachian tube is blocked
Puseletso Reply
what's atoms
Achol Reply
discuss how the following factors such as predation risk, competition and habitat structure influence animal's foraging behavior in essay form
Burnet Reply
cell?
Kuot
location of cervical vertebra
KENNEDY Reply
What are acid
Sheriff Reply
define biology infour way
Happiness Reply
What are types of cell
Nansoh Reply
how can I get this book
Gatyin Reply
what is lump
Chineye Reply
what is cell
Maluak Reply
what is biology
Maluak
what is vertibrate
Jeneba
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Musical signal processing with labview -- sound spatialization and reverberation. OpenStax CNX. Nov 07, 2007 Download for free at http://cnx.org/content/col10485/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Musical signal processing with labview -- sound spatialization and reverberation' conversation and receive update notifications?

Ask