<< Chapter < Page Chapter >> Page >

The applications of the QCM-D ranges from the deposition of nanoparticles into a surface, from the interaction of proteins within certain substrates. It can also monitors the bacterial amount of products when feed with different molecules, as the flexibility of the sensors into what can be deposited in them include nanoparticle, special functionalization or even cell and bacterias!

Experimental planning

In order to use QCM-D for studing the interaction of nanoparticles with a specific surface several steps must be followed. For demonstration purposes the following procedure will describe the use of a Q-Sense E4 with autosampler from Biolin Scientific. A summary is shown below as a quick guide to follow, but further details will be explained:

  1. Surface election and cleaning according with the manufacturer recommendations.
  2. Sample preparation including having the correct dilutions and enough sample for the running experiment.
  3. Equipment cleaning and set up of the correct parameters for the experiment.
  4. Data acquisition.
  5. Data interpretation.

Surface election

The decision of what surface of the the sensor to use is the most important decision to make fore each study. Biolin has a large library of available coatings ranging from different compositions of pure elements and oxides ( [link] ) to specific binding proteins. It is important to take into account the different chemistries of the sensors and the results we are looking for. For example studying a protein with high sulfur content on a gold sensor can lead to a false deposition results, as gold and sulfur have a high affinity to form bonds. For the purpose of this example, a gold coated sensor will be used in the remainder of the discussion.

From left to right, silica (SiO 2 ), gold (Au), and iron oxide (Fe 2 O 3 ) coated sensors. Each one is 1 cm in diameter.

Sensor cleaning

Since QCM-D relies on the amount of mass that is deposited into the surface of the sensor, a thorough cleaning is needed to ensure there is no contaminants on the surface that can lead to errors in the measurement. The procedure the manufacturer established to clean a gold sensor is as follows:

  1. Put the sensor in the UV/ozone chamber for 10 minutes
  2. Prepare 10 mL of a 5:1:1 solution of hydrogen peroxide:ammonia:water
  3. Submerge in this solution at 75 °C for 5 minutes.
  4. Rinse with copious amount of milliQ water.
  5. Dry with inert gas.
  6. Put the sensor in the UV/ozone chamber for 10 minutes as shown in [link] .
Gold sensors in loader of the UV/ozone chamber in the final step of the cleaning process.

Once the sensors are clean, extreme caution should be taken to avoid contamination of the surface. The sensors can be loaded in the flow chamber of the equipment making sure that the T-mark of the sensor matches the T mark of the chamber in order to make sure the electrodes are in constant contact. The correct position is shown in [link] .

Correct position of the sensor in the chamber.

Sample preparation

As the top range of mass that can be detected is merely micrograms, solutions must be prepared accordingly. For a typical run, a buffer solution is needed in which the deposition will be studied as well as, the sample itself and a solution of 2% of sodium dodecylsulfate [CH 3 (CH 2 ) 10 CH 2 OSO 3 Na, SDS]. For this example we will be using nanoparticles of magnetic iron oxide (nMag) coated with PAMS, and as a buffer 8% NaCl in DI water.

Questions & Answers

Give and explain different ways to improve the stabilization and prevent agglomeration of nanoparticles (AuNPs for example) in solution (water for example) ?
Abdolaziz Reply
Give and explain different ways to improve the stabilization and prevent agglomeration of nanoparticles (AuNPs for example) in solution (water for example) ? Consider the following: 1- Which kind of solvents you will use? Can you replace/change the solvents? 2- What will happen if you add the f
Abdolaziz
iron man suit
Sudais
who was the first nanotechnologist
Lizzy Reply
k
Veysel
technologist's thinker father is Richard Feynman but the literature first user scientist Nario Tagunichi.
Veysel
Norio Taniguchi
puvananathan
Interesting
Andr
I need help
Richard
@Richard Is that Richard Feynman
Vince
How can someone build up something with the help of nanotechnoloy
Troghty
anyone have book of Abdel Salam Hamdy Makhlouf book in pdf Fundamentals of Nanoparticles: Classifications, Synthesis
Naeem Reply
what happen with The nano material on The deep space.?
pedro Reply
It could change the whole space science.
puvananathan
the characteristics of nano materials can be studied by solving which equation?
sibaram Reply
plz answer fast
sibaram
synthesis of nano materials by chemical reaction taking place in aqueous solvents under high temperature and pressure is call?
sibaram
hydrothermal synthesis
ISHFAQ
how can chip be made from sand
Eke Reply
is this allso about nanoscale material
Almas
are nano particles real
Missy Reply
yeah
Joseph
Hello, if I study Physics teacher in bachelor, can I study Nanotechnology in master?
Lale Reply
no can't
Lohitha
where is the latest information on a no technology how can I find it
William
currently
William
where we get a research paper on Nano chemistry....?
Maira Reply
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
Maira Reply
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
Google
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
Hafiz Reply
revolt
da
Application of nanotechnology in medicine
has a lot of application modern world
Kamaluddeen
yes
narayan
what is variations in raman spectra for nanomaterials
Jyoti Reply
ya I also want to know the raman spectra
Bhagvanji
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Nanomaterials and nanotechnology. OpenStax CNX. May 07, 2014 Download for free at http://legacy.cnx.org/content/col10700/1.13
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Nanomaterials and nanotechnology' conversation and receive update notifications?

Ask