<< Chapter < Page Chapter >> Page >

Average total cost, average variable cost, marginal cost

The breakdown of total costs into fixed and variable costs can provide a basis for other insights as well. The first five columns of [link] duplicate the previous table, but the last three columns show average total costs, average variable costs, and marginal costs. These new measures analyze costs on a per-unit (rather than a total) basis and are reflected in the curves shown in [link] .

Cost curves at the clip joint

The graph shows marginal cost as an upward-sloping curve, and average variable cost and average total cost as U-shaped curves.
The information on total costs, fixed cost, and variable cost can also be presented on a per-unit basis. Average total cost (ATC) is calculated by dividing total cost by the total quantity produced. The average total cost curve is typically U-shaped. Average variable cost (AVC) is calculated by dividing variable cost by the quantity produced. The average variable cost curve lies below the average total cost curve and is typically U-shaped or upward-sloping. Marginal cost (MC) is calculated by taking the change in total cost between two levels of output and dividing by the change in output. The marginal cost curve is upward-sloping.
Different types of costs
Labor Quantity Fixed Cost Variable Cost Total Cost Marginal Cost Average Total Cost Average Variable Cost
1 16 $160 $80 $240 $5.00 $15.00 $5.00
2 40 $160 $160 $320 $3.30 $8.00 $4.00
3 60 $160 $240 $400 $4.00 $6.60 $4.00
4 72 $160 $320 $480 $6.60 $6.60 $4.40
5 80 $160 $400 $560 $10.00 $7.00 $5.00
6 84 $160 $480 $640 $20.00 $7.60 $5.70

Average total cost (sometimes referred to simply as average cost) is total cost divided by the quantity of output. Since the total cost of producing 40 haircuts is $320, the average total cost for producing each of 40 haircuts is $320/40, or $8 per haircut. Average cost curves are typically U-shaped, as [link] shows. Average total cost starts off relatively high, because at low levels of output total costs are dominated by the fixed cost; mathematically, the denominator is so small that average total cost is large. Average total cost then declines, as the fixed costs are spread over an increasing quantity of output. In the average cost calculation, the rise in the numerator of total costs is relatively small compared to the rise in the denominator of quantity produced. But as output expands still further, the average cost begins to rise. At the right side of the average cost curve, total costs begin rising more rapidly as diminishing returns kick in.

Average variable cost obtained when variable cost is divided by quantity of output. For example, the variable cost of producing 80 haircuts is $400, so the average variable cost is $400/80, or $5 per haircut. Note that at any level of output, the average variable cost curve will always lie below the curve for average total cost, as shown in [link] . The reason is that average total cost includes average variable cost and average fixed cost. Thus, for Q = 80 haircuts, the average total cost is $8 per haircut, while the average variable cost is $5 per haircut. However, as output grows, fixed costs become relatively less important (since they do not rise with output), so average variable cost sneaks closer to average cost.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Microeconomics. OpenStax CNX. Aug 03, 2014 Download for free at http://legacy.cnx.org/content/col11627/1.10
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Microeconomics' conversation and receive update notifications?

Ask