<< Chapter < Page Chapter >> Page >

Learning objectives

  • Identify common elements and structures found in organic molecules
  • Explain the concept of isomerism
  • Identify examples of functional groups
  • Describe the role of functional groups in synthesizing polymers

Part 1

Penny is a 16-year-old student who visited her doctor, complaining about an itchy skin rash. She had a history of allergic episodes. The doctor looked at her sun-tanned skin and asked her if she switched to a different sunscreen. She said she had, so the doctor diagnosed an allergic eczema. The symptoms were mild so the doctor told Penny to avoid using the sunscreen that caused the reaction and prescribed an over-the-counter moisturizing cream to keep her skin hydrated and to help with itching.

  • What kinds of substances would you expect to find in a moisturizing cream?
  • What physical or chemical properties of these substances would help alleviate itching and inflammation of the skin?

Jump to the next Clinical Focus box.

Biochemistry is the discipline that studies the chemistry of life, and its objective is to explain form and function based on chemical principles. Organic chemistry is the discipline devoted to the study of carbon-based chemistry, which is the foundation for the study of biomolecules and the discipline of biochemistry . Both biochemistry and organic chemistry are based on the concepts of general chemistry, some of which are presented in Appendix A .

Elements in living cells

The most abundant element in cells is hydrogen (H), followed by carbon (C), oxygen (O), nitrogen (N), phosphorous (P), and sulfur (S). We call these elements macronutrient s , and they account for about 99% of the dry weight of cells. Some elements, such as sodium (Na), potassium (K), magnesium (Mg), zinc (Zn), iron (Fe), calcium (Ca), molybdenum (Mo), copper (Cu), cobalt (Co), manganese (Mn), or vanadium (Va), are required by some cells in very small amounts and are called micronutrient s or trace element s . All of these elements are essential to the function of many biochemical reactions, and, therefore, are essential to life.

The four most abundant elements in living matter (C, N, O, and H) have low atomic numbers and are thus light elements capable of forming strong bonds with other atoms to produce molecules ( [link] ). Carbon forms four chemical bonds, whereas nitrogen forms three, oxygen forms two, and hydrogen forms one. When bonded together within molecules, oxygen, sulfur, and nitrogen often have one or more “lone pairs” of electrons that play important roles in determining many of the molecules’ physical and chemical properties (see Appendix A ). These traits in combination permit the formation of a vast number of diverse molecular species necessary to form the structures and enable the functions of living organisms.

Carbon dioxide (CO2) has a carbon atom in the center. This carbon atom is double bonded to an oxygen on the left and another oxygen on the right. Ammonia NH3 has a nitrogen attached to 3 hydrogen atoms. Oxygen (O2) has two oxygen atoCarbon dioxide (CO2) has a carbon atom in the center. This carbon atom is double bonded to an oxygen on the left and another oxygen on the right. Ammonia NH3 has a nitrogen attached to 3 hydrogen atoms. Oxygen (O2) has two oxygen atoms double bonded to each other.ms double bonded to each other.
Some common molecules include carbon dioxide, ammonia, and oxygen, which consist of combinations of oxygen atoms (red spheres), carbon atoms (gray spheres), hydrogen atoms (white spheres), or nitrogen atoms (blue spheres).

Living organisms contain inorganic compound s (mainly water and salts; see Appendix A ) and organic molecules. Organic molecules contain carbon; inorganic compounds do not. Carbon oxides and carbonates are exceptions; they contain carbon but are considered inorganic because they do not contain hydrogen. The atoms of an organic molecule are typically organized around chains of carbon atoms.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Microbiology. OpenStax CNX. Nov 01, 2016 Download for free at http://cnx.org/content/col12087/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Microbiology' conversation and receive update notifications?

Ask