<< Chapter < Page Chapter >> Page >
Table titled: Common functional groups found in biomolecules; 3 columns, name, functional group and class of compound.  Aldehyde has a red C  double bonded O and an H; the C is also bound to a black R. This is found in carbohydrates. Amine has a red C double bonded to an O and single bonded to an NH. The C and the N are each also bound to a black R. This is found in proteins. Amino has a red NH2 bound to a black R. This is found in amino acids and proteins. Phosphate has a red PO3H2; the P is also bound to a black R. This is found in nucleic acids, phospholipids and ATP. Carbonyl has a red C double bonded to an O; the C is also bound to 2 black Rs. This is found in ketones, aldehydes, carboxylic acids, amides. Carboxylic acid has a red C double bonded to an O and to an OH; the C is also bound to a black R. This is found in amino acids, proteins, and fatty acids. Ester has a red C double bonded to an O and single bonded to another O. The C is bound to a black R and the single bonded O is also bound to a black R. This is found in lipids and nucleic acids. Ether has a red O bound to 2 black Rs. This is found in disaccharides, polysaccharides, and lipids. Hydroxyl has a red OH bound to a black R; this is found in alcohols, monosaccharides, amino acids, and nucleic acids. Ketone has a red C double bonded to an O; the C is also bound to 2 black Rs. This is found in carbohydrates. Methyl has a red CH3 bound to a black R. This is found in methylated compounds such as methyl alcohols and methyl esters. Sulfhydryl has a black R bound to a red SH.. This is found in amino acids and proteins

Macromolecules

Carbon chains form the skeletons of most organic molecules. Functional groups combine with the chain to form biomolecules. Because these biomolecules are typically large, we call them macromolecule s. Many biologically relevant macromolecules are formed by linking together a great number of identical, or very similar, smaller organic molecules. The smaller molecules act as building blocks and are called monomer s , and the macromolecules that result from their linkage are called polymer s . Cells and cell structures include four main groups of carbon-containing macromolecules: polysaccharides , proteins , lipids , and nucleic acids . The first three groups of molecules will be studied throughout this chapter. The biochemistry of nucleic acids will be discussed in Biochemistry of the Genome .

Of the many possible ways that monomers may be combined to yield polymers, one common approach encountered in the formation of biological macromolecules is dehydration synthesis . In this chemical reaction, monomer molecules bind end to end in a process that results in the formation of water molecules as a byproduct:

H—monomer—OH + H—monomer—OH H—monomer—monomer—OH + H 2 O

[link] shows dehydration synthesis of glucose binding together to form maltose and a water molecule. [link] summarizes macromolecules and some of their functions.

A diagram showing dehydration synthesis. On the left are two glucose molecules. The OH attached to carbon 1 in the first molecule is red; as is the H attached to the O on carbon 4 in the second molecule. An arrow indicates points to a new molecule that is missing the red OH and H from the previous image. In their place, the O that was attached to the H on carbon 4 is now also attached to carbon 1 of the other molecule.
In this dehydration synthesis reaction, two molecules of glucose are linked together to form maltose. In the process, a water molecule is formed.
Some Functions of Macromolecules
Macromolecule Functions
Carbohydrates Energy storage, receptors, food, structural role in plants, fungal cell walls, exoskeletons of insects
Lipids Energy storage, membrane structure, insulation, hormones, pigments
Nucleic acids Storage and transfer of genetic information
Proteins Enzymes, structure, receptors, transport, structural role in the cytoskeleton of a cell and the extracellular matrix
  • What is the byproduct of a dehydration synthesis reaction?

Key concepts and summary

  • The most abundant elements in cells are hydrogen, carbon, oxygen, nitrogen, phosphorus, and sulfur.
  • Life is carbon based. Each carbon atom can bind to another one producing a carbon skeleton that can be straight, branched, or ring shaped.
  • The same numbers and types of atoms may bond together in different ways to yield different molecules called isomers . Isomers may differ in the bonding sequence of their atoms ( structural isomers ) or in the spatial arrangement of atoms whose bonding sequences are the same ( stereoisomers ), and their physical and chemical properties may vary slightly or drastically.
  • Functional groups confer specific chemical properties to molecules bearing them. Common functional groups in biomolecules are hydroxyl, methyl, carbonyl, carboxyl, amino, phosphate, and sulfhydryl.
  • Macromolecules are polymers assembled from individual units, the monomers , which bind together like building blocks. Many biologically significant macromolecules are formed by dehydration synthesis , a process in which monomers bind together by combining their functional groups and generating water molecules as byproducts.

True/false

Aldehydes, amides, carboxylic acids, esters, and ketones all contain carbonyl groups.

True

Got questions? Get instant answers now!

Two molecules containing the same types and numbers of atoms but different bonding sequences are called enantiomers.

False

Got questions? Get instant answers now!

Short answer

Why are carbon, nitrogen, oxygen, and hydrogen the most abundant elements in living matter and, therefore, considered macronutrients?

Got questions? Get instant answers now!

Identify the functional group in each of the depicted structural formulas.

Figure A has a C bound to an OH. Figure B has a C double bonded to an O as well as a single bonded OH and R. Figure C has an N bound to an R and two Hs.
Got questions? Get instant answers now!

Questions & Answers

what is microbiology
Agebe Reply
What is a cell
Odelana Reply
what is cell
Mohammed
how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Microbiology. OpenStax CNX. Nov 01, 2016 Download for free at http://cnx.org/content/col12087/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Microbiology' conversation and receive update notifications?

Ask