<< Chapter < Page Chapter >> Page >

Learning objectives

  • Describe the unique features of each category of high G+C and low G+C gram-positive bacteria
  • Identify similarities and differences between high G+C and low G+C bacterial groups
  • Give an example of a bacterium of high G+C and low G+C group commonly associated with each category

Prokaryotes are identified as gram-positive if they have a multiple layer matrix of peptidoglycan forming the cell wall. Crystal violet, the primary stain of the Gram stain procedure, is readily retained and stabilized within this matrix, causing gram-positive prokaryotes to appear purple under a brightfield microscope after Gram staining. For many years, the retention of Gram stain was one of the main criteria used to classify prokaryotes, even though some prokaryotes did not readily stain with either the primary or secondary stains used in the Gram stain procedure.

Advances in nucleic acid biochemistry have revealed additional characteristics that can be used to classify gram-positive prokaryotes, namely the guanine to cytosine ratios (G+C) in DNA and the composition of 16S rRNA subunits. Microbiologists currently recognize two distinct groups of gram-positive, or weakly staining gram-positive, prokaryotes. The class Actinobacteria comprises the high G+C gram-positive bacteria , which have more than 50% guanine and cytosine nucleotides in their DNA. The class Bacilli comprises low G+C gram-positive bacteria , which have less than 50% of guanine and cytosine nucleotides in their DNA.

Actinobacteria: high g+c gram-positive bacteria

The name Actinobacteria comes from the Greek words for rays and small rod , but Actinobacteria are very diverse. Their microscopic appearance can range from thin filamentous branching rods to coccobacilli. Some Actinobacteria are very large and complex, whereas others are among the smallest independently living organisms. Most Actinobacteria live in the soil, but some are aquatic. The vast majority are aerobic. One distinctive feature of this group is the presence of several different peptidoglycans in the cell wall.

The genus Actinomyces is a much studied representative of Actinobacteria. Actinomyces spp. play an important role in soil ecology, and some species are human pathogens. A number of Actinomyces spp. inhabit the human mouth and are opportunistic pathogens, causing infectious diseases like periodontitis (inflammation of the gums) and oral abscesses. The species A. israelii is an anaerobe notorious for causing endocarditis (inflammation of the inner lining of the heart) ( [link] ).

a) A micrograph of branched cells. B) A micrograph of cells arranged in a V-shape – these are labeled palisades. C) A micrograph of corn-flake shaped cells with a nucleus. Smaller cells outside of these are identified with an arrow.
(a) Actinomyces israelii (false-color scanning electron micrograph [SEM]) has a branched structure. (b) Corynebacterium diphtheria causes the deadly disease diphtheria. Note the distinctive palisades. (c) The gram-variable bacterium Gardnerella vaginalis causes bacterial vaginosis in women. This micrograph shows a Pap smear from a woman with vaginosis. (credit a: modification of work by “GrahamColm”/Wikimedia Commons; credit b: modification of work by Centers for Disease Control and Prevention; credit c: modification of work by Mwakigonja AR, Torres LM, Mwakyoma HA, Kaaya EE)

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Microbiology. OpenStax CNX. Nov 01, 2016 Download for free at http://cnx.org/content/col12087/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Microbiology' conversation and receive update notifications?

Ask