<< Chapter < Page Chapter >> Page >

Squares and other powers

An exponent, or a power, is mathematical shorthand for repeated multiplications. For example, the exponent “2” means to multiply the base for that exponent by itself (in the example here, the base is “5”):

5 2 = 5 × 5 = 25

The exponent is “2” and the base is the number “5.” This expression (multiplying a number by itself) is also called a square. Any number raised to the power of 2 is being squared. Any number raised to the power of 3 is being cubed:

5 3 = 5 × 5 × 5 = 125

A number raised to the fourth power is equal to that number multiplied by itself four times, and so on for higher powers. In general:

n x = n × n x 1

Calculating percents

A percent is a way of expressing a fractional amount of something using a whole divided into 100 parts. A percent is a ratio whose denominator is 100. We use the percent symbol, %, to show percent. Thus, 25% means a ratio of 25 100 , 3% means a ratio of 3 100 , and 100 % percent means 100 100 , or a whole.

Converting percents

A percent can be converted to a fraction by writing the value of the percent as a fraction with a denominator of 100 and simplifying the fraction if possible.

25% = 25 100 = 1 4

A percent can be converted to a decimal by writing the value of the percent as a fraction with a denominator of 100 and dividing the numerator by the denominator.

10% = 10 100 = 0.10

To convert a decimal to a percent, write the decimal as a fraction. If the denominator of the fraction is not 100, convert it to a fraction with a denominator of 100, and then write the fraction as a percent.

0.833 = 833 1000 = 83.3 100 = 83.3%

To convert a fraction to a percent, first convert the fraction to a decimal, and then convert the decimal to a percent.

3 4 = 0.75 = 75 100 = 75%

Suppose a researcher finds that 15 out of 23 students in a class are carriers of Neisseria meningitides . What percentage of students are carriers? To find this value, first express the numbers as a fraction.

carriers total students = 15 23

Then divide the numerator by the denominator.

15 23 = 15 ÷ 23 0.65

Finally, to convert a decimal to a percent, multiply by 100.

0.65 × 100 = 65%

The percent of students who are carriers is 65%.

You might also get data on occurrence and non-occurrence; for example, in a sample of students, 9 tested positive for Toxoplasma antibodies, while 28 tested negative. What is the percentage of seropositive students? The first step is to determine the “whole,” of which the positive students are a part. To do this, sum the positive and negative tests.

positive + negative = 9 + 28 = 37

The whole sample consisted of 37 students. The fraction of positives is:

positive total students = 9 37

To find the percent of students who are carriers, divide the numerator by the denominator and multiply by 100.

9 37 = 9 ÷ 37 0.24 0.24 × 100 = 24%

The percent of positive students is about 24%.

Another way to think about calculating a percent is to set up equivalent fractions, one of which is a fraction with 100 as the denominator, and cross-multiply. The previous example would be expressed as:

9 37 = x 100

Now, cross multiply and solve for the unknown:

Questions & Answers

what is microbiology
Agebe Reply
What is a cell
Odelana Reply
what is cell
Mohammed
how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Microbiology. OpenStax CNX. Nov 01, 2016 Download for free at http://cnx.org/content/col12087/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Microbiology' conversation and receive update notifications?

Ask