<< Chapter < Page Chapter >> Page >

Humans have a similar temperature regulation feedback system that works by promoting either heat loss or heat gain ( [link] b ). When the brain’s temperature regulation center receives data from the sensors indicating that the body’s temperature exceeds its normal range, it stimulates a cluster of brain cells referred to as the “heat-loss center.” This stimulation has three major effects:

  • Blood vessels in the skin begin to dilate (widen) allowing more blood from the body core to flow to the surface of the skin allowing the heat to radiate into the environment.
  • As blood flow to the skin increases, sweat glands are activated to increase their output. As the sweat evaporates from the skin surface into the surrounding air, it takes heat with it.
  • The depth of respiration increases, and a person may breathe through an open mouth instead of through the nasal passageways. This further increases heat loss from the lungs.

In contrast, when the brain senses the body becoming too cool:

  • Blood flow to the skin, and blood returning from the limbs is diverted into a network of deep veins. This arrangement traps heat closer to the body core and restricts heat loss.
  • If heat loss is severe, the brain triggers an increase in random signals to skeletal muscles, causing them to contract and producing shivering. The muscle contractions of shivering release heat while using up ATP.
  • The brain triggers the thyroid gland in the endocrine system to release thyroid hormone, which increases metabolic activity and heat production in cells throughout the body.

Water concentration in the body is critical for proper functioning. A person’s body retains very tight control on water levels without conscious control by the person. Watch this video to learn more about water concentration in the body. Which organ has primary control over the amount of water in the body?

Positive feedback

Positive feedback intensifies a change in the body’s condition rather than reversing it. A deviation from the normal range results in more change, and the system moves farther away from the normal range. Positive feedback in the body is normal only when there is a definite end point. Childbirth, fever, lactation (breast feeding) and the body’s response to blood loss are examples of positive feedback loops that are normal but are activated only when needed.

Childbirth at full term is an example of a situation in which the maintenance of the existing body state is not desired. Enormous changes in the mother’s body are required to expel the baby at the end of pregnancy. And the events of childbirth, once begun, must progress rapidly to a conclusion or the life of the mother and the baby are at risk. The extreme muscular work of labor and delivery are the result of a positive feedback system ( [link] ).

Positive feedback loop

This diagram shows the steps of a positive feedback loop as a series of stepwise arrows looping around a diagram of an infant within the uterus of a pregnant woman. Initially the head of the baby pushes against the cervix, transmitting nerve impulses from the cervix to the brain. Next the brain stimulates the pituitary gland to secrete oxytocin which is carried in the bloodstream to the uterus. Finally, the oxytocin simulates uterine contractions and pushes the baby harder into the cervix. As the head of the baby pushes against the cervix with greater and greater force, the uterine contractions grow stronger and more frequent. This mechanism is a positive feedback loop.
Normal childbirth is driven by a positive feedback loop. A positive feedback loop results in a change in the body’s status, rather than a return to homeostasis.

The first contractions of labor push the baby toward the cervix (the lowest part of the uterus). The cervix contains stretch-sensitive nerve cells that monitor stretching. These nerve cells send messages to the brain, which in turn causes the brain to release the hormone oxytocin into the bloodstream. Oxytocin causes stronger contractions of the muscles in of the uterus, pushing the baby further down the birth canal. This causes even greater stretching of the cervix. The cycle of stretching, oxytocin release, and increasingly more forceful contractions stops only when the baby is born. At this point, the stretching of the cervix halts, stopping the release of oxytocin.

Both negative and positive feedback are considered to be homeostatic mechanisms . Homeostatic mechanisms help the body to restore and maintain a homeostatic balance. A negative feedback mechanism serves to make the unwanted change smaller, while a positive feedback mechanism increases the change before the body can return to homeostasis.

Chapter review

Homeostasis is the activity of cells throughout the body to maintain the physiological state within a narrow range that is compatible with life. Homeostasis is regulated by negative feedback loops and, much less frequently, by positive feedback loops. Both have the same components of a stimulus, sensor, control center, and effector; however, negative feedback loops work to prevent an excessive response to the stimulus, whereas positive feedback loops intensify the response until an end point is reached.

Water concentration in the body is critical for proper functioning. A person’s body retains very tight control on water levels without conscious control by the person. Watch this video to learn more about water concentration in the body. Which organ has primary control over the amount of water in the body?

The kidneys.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Introduction to anatomy. OpenStax CNX. Jan 26, 2015 Download for free at http://legacy.cnx.org/content/col11755/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Introduction to anatomy' conversation and receive update notifications?

Ask