<< Chapter < Page Chapter >> Page >

That funny phase

You probably noticed in the last problem that even though the wave forms looked fairly different, the sound was similar. Let's look into this a bit deeper with a simpler sound.

  • Create a script file called phasefun.m to put your code in for this problem.
  • Pick two harmonic frequencies and generate a signal from two cosines at these frequencies added together and call it sig1 . Use Fs = 8000 (remember that you can reproduce only frequencies that are less than Fs/2 ).
  • Now generate a second signal called sig2 exactly the same as the first one, except time delay the second cosine by a half cycle (half of its period).
  • Use subplot to show a few periods of both signals, do they look different? Save the plot as phasesigs.tif . What did the time delay do to the phase?
  • Play each signal with soundsc , do they sound different?
  • Redo sig2 with a few different delays and compare the sound to the first signal.
  • Create a sig3 that is one cosine at some frequency. Now add sig3 with a timed delayed version of itself and call it sig4 . Use a quarter cycle delay.
  • Use subplot and plot a few periods of sig3 and sig4 . Play them with soundsc , do they sound different to you?
  • What is suggested about our hearing capabilities from this experiment?
  • You will need to show the TA the following files: phasefun.m phasesigs.tif

Truncated fourier series

In this section, we'll reconstruct the periodic function x(t) , shown in Figure 1, by synthesizing a periodic signal from a variable number of Fourier Series coefficients, and observe similarities and differences in the synthesized signal.

Periodic Signal

Gibbs phenomena

  • Create a script file called gibbs.m to put your code in for this problem.
  • Click here to download the MATLAB function Ck.m . Take a look at the contents of the function. This function takes one argument k , and creates the k th Fourier series coefficient for the squarewave above:
    C k = { 0 if  k = 0 ,   k  even 1 j k π [ cos ( 2 k π 3 ) cos ( k π 3 ) ] if  k  odd MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoeadaWgaaWcbaGaam4AaaqabaGccqGH9aqpdaGabaqaauaabaqaciaaaeaacaaIWaaabaGaaeyAaiaabAgacaqGGaGaam4Aaiabg2da9iaaicdacaGGSaGaaeiiaiaadUgacaqGGaGaaeyzaiaabAhacaqGLbGaaeOBaaqaamaalaaabaGaaGymaaqaaiaadQgacaWGRbGaeqiWdahaamaadmaabaGaci4yaiaac+gacaGGZbWaaeWaaeaadaWcaaqaaiaaikdacaWGRbGaeqiWdahabaGaaG4maaaaaiaawIcacaGLPaaacqGHsislciGGJbGaai4BaiaacohadaqadaqaamaalaaabaGaam4Aaiabec8aWbqaaiaaiodaaaaacaGLOaGaayzkaaaacaGLBbGaayzxaaaabaGaaeyAaiaabAgacaqGGaGaam4AaiaabccacaqGVbGaaeizaiaabsgaaaaacaGL7baaaaa@64FA@
    C k ( 1 ) = 1 j π = 0 + j 0.3183 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoeadaWgaaWcbaGaam4AaaqabaGccaGGOaGaaGymaiaacMcacqGH9aqpdaWcbaWcbaGaeyOeI0IaaGymaaqaaiaadQgacqaHapaCaaGccqGH9aqpcaaIWaGaey4kaSIaamOAaiaaicdacaGGUaGaaG4maiaaigdacaaI4aGaaG4maaaa@4758@ . Plot the magnitude and phase of thecoefficients C k for k { 10 , 9 , , 9 , 10 } MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgacqGHiiIZdaGadaqaaiabgkHiTiaaigdacaaIWaGaaiilaiabgkHiTiaaiMdacaGGSaGaeSOjGSKaaiilaiaaiMdacaGGSaGaaGymaiaaicdaaiaawUhacaGL9baaaaa@44B3@ . The magnitude and phase should be plotted separately using the subplot command, with the magnitude plotted in the top half of the window and the phase in the bottom half. Place frequency w on the x axis. Use the MATLAB command stem instead of plot to emphasize that the coefficients are a function of integer-valued (not continuous) k . Label your plots.
  • Save the graph as Coeff.tif .
  • Write whatever script/function files you need to implement the calculation of the signal x t with a truncated Fourier series:
    x t k K max K max C k e jk ω 0 t k 0 K max 2 C k cos k ω 0 t C k
    for a given K max
    You can avoid numerical problems and ensure a real answer if you use the cosine form. For this example, w 0 = 1 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEhadaWgaaWcbaGaaGimaaqabaGccqGH9aqpcaaIXaaaaa@398F@ .
  • Produce plots of x t for t 5 5 for each of the following cases: K max = 5; 15; and 30. For all the plots, use as your time values the MATLAB vector t=-5:.01:5 . Stack the three plots in a single figure using the subplot command and include your name in the title of the figure. Save the figure as FourTrunc.tif
  • Add clear comments describing what the files do. You will need to show the TA the following files: gibbs.m Coeff.tifFourTrunc.tif

As you add more cosines you'll note that you do get closer to the square wave (in terms of squared error), but that at the edges there is some undershoot and overshoot that becomes shorter in time, but the magnitude of the undershoot and overshoot stay large. This persistent undershoot and overshoot at edges is called Gibbs Phenomenon.

In general, this kind of "ringing" occurs at discontinuities if you try to synthesize a sharp edge out of too few low frequencies. Or, if you start with a real signal and filter out its higher frequencies, it is "as if" you had synthesized the signal from low frequencies. Thus, low-pass filtering (a filter that only passes low-frequencies) will also cause this kind of ringing.

For example, when compressing an audio signal, higher frequencies are usually removed (that is, the audio signal is low-pass filtered). Then, if there is an impulse edge or "attack" in the music, ringing will occur. However, the ringing (called "pre-echo" in audio) can be heard only before the attack, because the attack masks the ringing that comes after it (this masking effect happens in your head). High-quality MP3 systems put a lot of effort into detecting attacks and processing the signals to avoid pre-echo.

What to show the ta

Show the TA ALL m-files that you created or edited and the files below. gibbs.m Coeff.tifFourTrunc.tif sigsynth.maddcosines.m synthwaves.tifphasefun.m phasesigs.tifany wav files created

An applet here provides a great interface for listening to sinusoids and their harmonics. There are some well-known auditory illusions associated with the perception of pitch here .

Questions & Answers

what is microbiology
Agebe Reply
What is a cell
Odelana Reply
what is cell
Mohammed
how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Continuous time linear systems laboratory (ee 235). OpenStax CNX. Sep 28, 2007 Download for free at http://cnx.org/content/col10374/1.8
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Continuous time linear systems laboratory (ee 235)' conversation and receive update notifications?

Ask