<< Chapter < Page Chapter >> Page >

n n 1 N x n A W n W n 0 2 iid. A 1 N n 1 N x n MVUB and MLE estimator. Now suppose that we have prior knowledge that A 0 A A 0 . We might incorporate this by forming a new estimator

A A 0 A A 0 A A 0 A A 0 A 0 A A 0
This is called a truncated sample mean estimator of A . Is A a better estimator of A than the sample mean A ?

Let p a denote the density of A . Since A 1 N x n , p a A 2 N . The density of A is given by

p a A A 0 a A 0 p a I { - A 0 A 0 } A A 0 a A 0
Now consider the MSE of the sample mean A .
MSE A a a A 2 p a

Note

  • A is biased ( ).
  • Although A is MVUB, A is better in the MSE sense.
  • Prior information is aptly described by regarding A as a random variable with a prior distribution U A 0 A 0 , which implies that we know A 0 A A 0 , but otherwise A is abitrary.
Mean of A A .
Mean of A A .

The bayesian approach to statistical modeling

Where w is the noise and x is the observation.

n n 1 N x n A W n

Prior distribution allows us to incorporate prior information regarding unknown paremter--probable values of parameter aresupported by prior. Basically, the prior reflects what we believe "Nature" will probably throw at us.

Elements of bayesian analysis

  • (a)

    joint distribution p x , p x p
  • (b)

    marginal distributions p x p x p p x p x p where p is a prior .
  • (c)

    posterior distribution p x p x , p x p x p x p x p

0 1 p x n x x 1 n x which is the Binomial likelihood. p 1 B 1 1 1 which is the Beta prior distriubtion and B

This reflects prior knowledge that most probable values of are close to .

Joint density

p x , n x B x 1 1 n x 1

Marginal density

p x n x x n x n

Posterior density

p x x 1 n x 1 B x n x where B x n x is the Beta density with parameters x and n x

Selecting an informative prior

Clearly, the most important objective is to choose the prior p that best reflects the prior knowledge available to us. In general, however, our prior knowledge is imprecise andany number of prior densities may aptly capture this information. Moreover, usually the optimal estimator can't beobtained in closed-form.

Therefore, sometimes it is desirable to choose a prior density that models prior knowledge and is nicely matched in functional form to p x so that the optimal esitmator (and posterior density) can be expressed in a simple fashion.

Choosing a prior

    1. informative priors

  • design/choose priors that are compatible with prior knowledge of unknown parameters

    2. non-informative priors

  • attempt to remove subjectiveness from Bayesian procedures
  • designs are often based on invariance arguments

Suppose we want to estimate the variance of a process, incorporating a prior that is amplitude-scaleinvariant (so that we are invariant to arbitrary amplitude rescaling of data). p s 1 s satisifies this condition. 2 p s A 2 p s where p s is non-informative since it is invariant to amplitude-scale.

Conjugate priors

Idea

Given p x , choose p so that p x p x p has a simple functional form.

Conjugate priors

Choose p , where is a family of densities ( e.g. , Gaussian family) so that the posterior density also belongsto that family.

conjugate prior
p is a conjugate prior for p x if p p x

n n 1 N x n A W n W n 0 2 iid. Rather than modeling A U A 0 A 0 (which did not yield a closed-form estimator) consider p A 1 2 A 2 -1 2 A 2 A 2

With 0 and A 1 3 A 0 this Gaussian prior also reflects prior knowledge that it is unlikely for A A 0 .

The Gaussian prior is also conjugate to the Gaussian likelihood p A x 1 2 2 N 2 -1 2 2 n 1 N x n A 2 so that the resulting posterior density is also a simple Gaussian, as shown next.

First note that p A x 1 2 2 N 2 -1 2 2 n 1 N x n -1 2 2 N A 2 2 N A x - where x - 1 N n 1 N x n .

p x A p A x p A A p A x p A -1 2 1 2 N A 2 2 N A x - 1 A 2 A 2 A -1 2 1 2 N A 2 2 N A x - 1 A 2 A 2 -1 2 Q A A -1 2 Q A
where Q A N 2 A 2 2 N A x - 2 A 2 A 2 2 A A 2 2 A 2 . Now let A | x 2 1 N 2 1 A 2 A | x 2 N 2 x - A 2 A | x 2 Then by "completing the square" we have
Q A 1 A | x 2 A 2 2 A | x A A | x 2 A | x 2 A | x 2 2 A 2 1 A | x 2 A A | x 2 A | x 2 A | x 2 2 A 2
Hence, p x A -1 2 A | x 2 A A | x 2 -1 2 2 A 2 A | x 2 A | x 2 A -1 2 A | x 2 A A | x 2 -1 2 2 A 2 A | x 2 A | x 2 where -1 2 A | x 2 A A | x 2 is the "unnormalized" Gaussian density and -1 2 2 A 2 A | x 2 A | x 2 is a constant, independent of A . This implies that p x A 1 2 A | x 2 -1 2 A | x 2 A A | x 2 where A | x A | x A | x 2 . Now
A x A A A p x A A | x N 2 x - A 2 N 2 1 A 2 A 2 A 2 2 N x - 2 N A 2 2 N x - 1
Where 0 A 2 A 2 2 N 1

    Interpretation

  • When there is little data A 2 2 N is small and A .
  • When there is a lot of data A 2 2 N , 1 and A x - .

Interplay between data and prior knowledge

Small N A favors prior.

Large N A favors data.

The multivariate gaussian model

The multivariate Gaussian model is the most important Bayesian tool in signal processing. It leads directly tothe celebrated Wiener and Kalman filters.

Assume that we are dealing with random vectors x and y . We will regard y as a signal vector that is to be estimated from an observation vector x .

y plays the same role as did in earlier discussions. We will assume that y is p1 and x is N1. Furthermore, assume that x and y are jointly Gaussian distributed x y 0 0 R xx R xy R yx R yy x 0 , y 0 , x x R xx , x y R xy , y x R yx , y y R yy . R R xx R xy R yx R yy

x y W , W 0 2 I p y 0 R yy which is independent of W . x y W 0 , x x y y y W W y W W R yy 2 I , x y y y W y R yy y x . x y 0 0 R yy 2 I R yy R yy R yy From our Bayesian perpsective, we are interested in p x y .

p x y p x , y p x 2 N 2 2 p 2 R -1 2 -1 2 x y R x y 2 N 2 R xx -1 2 -1 2 x R xx x
In this formula we are faced with R R xx R xy R yx R yy The inverse of this covariance matrix can be written as R xx R xy R yx R yy R xx 0 0 0 R xx R xy I Q R yx R xx I where Q R yy R yx R xx R xy . (Verify this formula by applying the right hand side above to R to get I .)

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Statistical signal processing. OpenStax CNX. Jun 14, 2004 Download for free at http://cnx.org/content/col10232/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Statistical signal processing' conversation and receive update notifications?

Ask