<< Chapter < Page Chapter >> Page >

Summary

Redefined domains of trigonometric functions are tabulated here :

--------------------------------------------------------------------------------------------------- Trigonometric Old New Old NewFunction Domain Domain Range Range ---------------------------------------------------------------------------------------------------sine R [-π/2, π/2] [-1,1][-1,1] cosine R [0, π][-1,1] [-1,1]tan R – odd multiples of π/2 (-π/2, π/2) R R cosecant R – integer multiple of π [-π/2, π/2]– {0} R – (-1,1) R – (-1,1) secant R - odd multiples of π/2 [0, π]– {π/2} R – (-1,1) R – (-1,1) cotangent R – integer multiple of π (0, π) R R---------------------------------------------------------------------------------------------------

We observe that there is no change in the range – even though domains of the trigonometric functions have changed.

The corresponding domain and range of six inverse trigonometric functions are tabulated here.

-------------------------------------------------------------- Inverse Domain RangeTrigonometric Function-------------------------------------------------------------- arcsine [-1,1][-π/2, π/2]arccosine [-1,1] [0, π]arctangent R (-π/2, π/2)arccosecant R – (-1,1) [-π/2, π/2] – {0}arcsecant R – (-1,1) [0, π] – {π/2}arccotangent R (0, π) --------------------------------------------------------------

Exercise

Find the domain of the function given by :

f x = 2 sin - 1 x

The exponent of the exponential function is inverse trigonometric function. Exponential function is real for all real values of exponent. We see here that given function is real for the values of “x” corresponding to which arcsine function is real. Now, domain of arcsine function is [-1,1]. This is the interval of "x" for which arcsine is real. Hence, domain of the given function, “f(x)” is :

Domain = [ - 1,1 ]

Problem : Find the domain of the function given by :

f x = cos - 1 3 3 + sin x

Solution : The given function is an inverse cosine function whose argument is a rational function involving trigonometric function. The domain interval of inverse cosine function is [-1, 1]. Hence, value of argument to inverse cosine function should lie within this interval. It means that :

- 1 3 3 + sin x 1

Comparing with the form of modulus, | x | 1 - 1 x 1 , we conclude :

| 3 | | 3 + sin x | 1

Since, modulus is a non-negative number, the inequality sign remains same after simplification :

| 3 | | 3 + sin x |

Again 3>0 and 3+sin x>0, we can open up the expression within the modulus operator without any change in inequality sign :

3 3 + sin x 0 sin x sin x 0

The solution of sine function is the domain of the given function :

Domain = 2 n π x 2 n + 1 π , x Z

Find range of the function :

f x = 1 2 sin 2 x

We have already solved this problem by building up interval in earlier module. Here, we shall find domain conventionally by solving for x. The denominator of given function is non-negative as value of sin2x can not exceed 1. Hence, domain of function is real number set R. Further, maximum value of sin2x is 1. Hence,

y = f x = 1 2 - sin 2 x > 1

This means given function is positive for all real x. Now, solving for x,

2 y y sin 2 x = 1 sin 2 x = 2 y 1 y x = 1 2 sin - 1 2 y - 1 y

We know that domain of sine inverse function is [-1,1]. Hence,

- 1 2 y - 1 y 1

Since y>0, we can simplify this inequality as :

- y 2 y - 1 y

Either,

2 y - 1 - y y 1 3

Or,

2 y - 1 y y 1

Range = [ 1 3 , 1 ]

Find domain of function

f x = sin - 1 { log 2 x 2 + 3 x + 4 }

This is a composite function in which quadratic function is argument of logarithmic function. The logarithmic function is, in turn, argument of inverse sine function. In such case, it is advantageous to evaluate from outer to inner part. The domain of outermost inverse trigonometric function is [-1,1].

- 1 { log 2 x 2 + 3 x + 4 } 1 log 2 2 - 1 { log 2 x 2 + 3 x + 4 } log 2 2 1 2 x 2 + 3 x + 4 2

For the first inequality,

2 x 2 + 6 x + 8 1 2 x 2 + 6 x + 7 0

This quadratic function is positive for all value of x. For the second inequality,

x 2 + 3 x + 4 2 x 2 + 3 x + 2 0

The solution of this inequality is [1,2]. The intersection of R and [1,2]is [1,2]. Hence, domain of given function is [1,2].

Find the range of the function

f x = cos - 1 x 2 1 + x 2

Hint : The range of rational expression as argument of inverse trigonometric function is [0,1]. But, domain of arccosine is [-1,1]and range is [0,π]. The function is continuously decreasing. The maximum and minimum values are 0 and1 (see arccosine graph). Hence, range of given function is [0, π/2].

Find the range of the function

f x = cosec - 1 [ 1 + sin 2 x ]

where [.] denotes greatest integer function.

The minimum and maximum value of sin 2 x is 0 and 1. Hence, range of 1 + sin 2 x is defined in the interval given by :

1 1 + sin 2 x 2

The corresponding values returned by GIF are 1 and 2. It means :

[ 1 + sin 2 x ] = { 1,2 }

But domain of arccosecant is [-π/2, π/2] – {0}. Refer graph of arccosecant. Thus, arccosecant can take only 1 as its argument, which falls within the domain of arccosecant. Hence, range of given function is a singleton :

Range = { cosec - 1 1 }

Questions & Answers

I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
What would be the best educational aid(s) for gifted kids/savants?
Heidi Reply
treat them normal, if they want help then give them. that will make everyone happy
Saurabh
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Functions. OpenStax CNX. Sep 23, 2008 Download for free at http://cnx.org/content/col10464/1.64
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Functions' conversation and receive update notifications?

Ask