<< Chapter < Page Chapter >> Page >
θ 0 30 45 60 90 180
tan θ 0 1 3 1 3 0

Now that we have graphs for sin θ and cos θ , there is an easy way to visualise the tangent graph. Let us look back at our definitions of sin θ and cos θ for a right-angled triangle.

sin θ cos θ = opposite hypotenuse adjacent hypotenuse = opposite adjacent = tan θ

This is the first of an important set of equations called trigonometric identities . An identity is an equation, which holds true for any value which is put into it. In this case we have shown that

tan θ = sin θ cos θ

for any value of θ .

So we know that for values of θ for which sin θ = 0 , we must also have tan θ = 0 . Also, if cos θ = 0 our value of tan θ is undefined as we cannot divide by 0. The graph is shown in [link] . The dashed vertical lines are at the values of θ where tan θ is not defined.

The graph of tan θ .

Functions of the form y = a tan ( x ) + q

In the figure below is an example of a function of the form y = a tan ( x ) + q .

The graph of 2 tan θ + 1 .

Functions of the form y = a tan ( θ ) + q :

  1. On the same set of axes, plot the following graphs:
    1. a ( θ ) = tan θ - 2
    2. b ( θ ) = tan θ - 1
    3. c ( θ ) = tan θ
    4. d ( θ ) = tan θ + 1
    5. e ( θ ) = tan θ + 2
    Use your results to deduce the effect of q .
  2. On the same set of axes, plot the following graphs:
    1. f ( θ ) = - 2 · tan θ
    2. g ( θ ) = - 1 · tan θ
    3. h ( θ ) = 0 · tan θ
    4. j ( θ ) = 1 · tan θ
    5. k ( θ ) = 2 · tan θ
    Use your results to deduce the effect of a .

You should have found that the value of a affects the steepness of each of the branches. The larger the absolute magnitude of a , the quicker the branches approach their asymptotes, the values where they are not defined. Negative a values switch the direction of the branches. You should have also found that the value of q affects the vertical shift as for sin θ and cos θ . These different properties are summarised in [link] .

Table summarising general shapes and positions of graphs of functions of the form y = a tan ( x ) + q .
a > 0 a < 0
q > 0
q < 0

Domain and range

The domain of f ( θ ) = a tan ( θ ) + q is all the values of θ such that cos θ is not equal to 0. We have already seen that when cos θ = 0 , tan θ = sin θ cos θ is undefined, as we have division by zero. We know that cos θ = 0 for all θ = 90 + 180 n , where n is an integer. So the domain of f ( θ ) = a tan ( θ ) + q is all values of θ , except the values θ = 90 + 180 n .

The range of f ( θ ) = a tan θ + q is { f ( θ ) : f ( θ ) ( - , ) } .

Intercepts

The y -intercept, y i n t , of f ( θ ) = a tan ( x ) + q is again simply the value of f ( θ ) at θ = 0 .

y i n t = f ( 0 ) = a tan ( 0 ) + q = a ( 0 ) + q = q

Asymptotes

As θ approaches 90 , tan θ approaches infinity. But as θ is undefined at 90 , θ can only approach 90 , but never equal it. Thus the tan θ curve gets closer and closer to the line θ = 90 , without ever touching it. Thus the line θ = 90 is an asymptote of tan θ . tan θ also has asymptotes at θ = 90 + 180 n , where n is an integer.

Graphs of trigonometric functions

  1. Using your knowldge of the effects of a and q , sketch each of the following graphs, without using a table of values, for θ [ 0 ; 360 ]
    1. y = 2 sin θ
    2. y = - 4 cos θ
    3. y = - 2 cos θ + 1
    4. y = sin θ - 3
    5. y = tan θ - 2
    6. y = 2 cos θ - 1
  2. Give the equations of each of the following graphs:

The following presentation summarises what you have learnt in this chapter.

Summary

  • We can define three trigonometric functions for right angled triangles: sine (sin), cosine (cos) and tangent (tan).
  • Each of these functions have a reciprocal: cosecant (cosec), secant (sec) and cotangent (cot).
  • We can use the principles of solving equations and the trigonometric functions to help us solve simple trigonometric equations.
  • We can solve problems in two dimensions that involve right angled triangles.
  • For some special angles, we can easily find the values of sin, cos and tan.
  • We can extend the definitions of the trigonometric functions to any angle.
  • Trigonometry is used to help us solve problems in 2-dimensions, such as finding the height of a building.
  • We can draw graphs for sin, cos and tan

End of chapter exercises

  1. Calculate the unknown lengths
  2. In the triangle P Q R , P R = 20  cm, Q R = 22  cm and P R ^ Q = 30 . The perpendicular line from P to Q R intersects Q R at X . Calculate
    1. the length X R ,
    2. the length P X , and
    3. the angle Q P ^ X
  3. A ladder of length 15 m is resting against a wall, the base of the ladder is 5 m from the wall. Find the angle between the wall and the ladder?
  4. A ladder of length 25 m is resting against a wall, the ladder makes an angle 37 to the wall. Find the distance between the wall and the base of the ladder?
  5. In the following triangle find the angle A B ^ C
  6. In the following triangle find the length of side C D
  7. A ( 5 ; 0 ) and B ( 11 ; 4 ) . Find the angle between the line through A and B and the x-axis.
  8. C ( 0 ; - 13 ) and D ( - 12 ; 14 ) . Find the angle between the line through C and D and the y-axis.
  9. A 5 m ladder is placed 2 m from the wall. What is the angle the ladder makes with the wall?
  10. Given the points: E(5;0), F(6;2) and G(8;-2), find angle F E ^ G .
  11. An isosceles triangle has sides 9 cm , 9 cm and 2 cm . Find the size of the smallest angle of the triangle.
  12. A right-angled triangle has hypotenuse 13 mm . Find the length of the other two sides if one of the angles of the triangle is 50 .
  13. One of the angles of a rhombus ( rhombus - A four-sided polygon, each of whose sides is of equal length) with perimeter 20 cm is 30 .
    1. Find the sides of the rhombus.
    2. Find the length of both diagonals.
  14. Captain Hook was sailing towards a lighthouse with a height of 10 m .
    1. If the top of the lighthouse is 30 m away, what is the angle of elevation of the boat to the nearest integer?
    2. If the boat moves another 7 m towards the lighthouse, what is the new angle of elevation of the boat to the nearest integer?
  15. (Tricky) A triangle with angles 40 , 40 and 100 has a perimeter of 20 cm . Find the length of each side of the triangle.

Questions & Answers

what is microbiology
Agebe Reply
What is a cell
Odelana Reply
what is cell
Mohammed
how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Siyavula textbooks: grade 10 maths [caps]. OpenStax CNX. Aug 03, 2011 Download for free at http://cnx.org/content/col11306/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Siyavula textbooks: grade 10 maths [caps]' conversation and receive update notifications?

Ask