<< Chapter < Page Chapter >> Page >

Stormwater sewer systems located within the state's designated urban areas

A different set of stormwater management issues arise in older urban areas that are already developed. Most of the United States' older cities and suburbs, especially those established in the late-19 th and early 20 th centuries, do not have Municipal Separate Stormwater Sewer Systems. Instead, they have what are known as combined sewer systems    – sewers that carry both the stormwater runoff from paved streets and the wastewater (sewage) from homes, stores and factories. These combined sewers transport the mixed wastewater and stormwater to municipal sewage treatment plants where the diluted sewage is treated and then discharged to a waterway under an NPDES permit ( NRC, 2008 ).

Water quality problems arise when rainstorms deposit more precipitation in the city than can be handled by the sewage treatment plant. As the diluted wastewater begins to fill up the combined sewer system at a faster rate than it can be treated, the sewage treatment plant operators are faced with a difficult choice – they can either allow the diluted sewage to continue to back up in the sewers, eventually flooding residents' basements (a politically unpopular as well as unhealthy option), or they can allow the diluted wastewater to bypass the sewage treatment plant and be discharged directly into the waterway, with the untreated wastewater's pollutant levels usually exceeding the limits set forth in the plant's NPDES permit. Most treatment plant operators choose the more politically acceptable option of releasing the wastewater in violation of their NPDES permit, creating water pollution incidents called combined sewer overflows (CSOs)    .

Strategies to manage csos

CSO problems are very difficult and expensive to resolve in older cities. One approach to managing stormwater off-site is to tear up the city's streets, digging up the old combined sewers and replacing them with separate stormwater and wastewater sewer systems. The high costs of retrofitting new separate sewer systems are often prohibitively expensive, especially in these times of stressed state and local budgets. Moreover, the extensive traffic disruptions involved in replacing most streets would not make this a politically popular choice.

A second approach to managing CSO issues off-site in developed areas is to keep the combined sewer system, but to construct a reservoir system large enough to store the diluted wastewater until it can be treated by the sewage treatment plant. This is the approach used by both the City of Milwaukee, Wisconsin and by the Metropolitan Water Reclamation District of Greater Chicago in its Tunnel and Reservoir Plan , or TARP. Although most of TARP has been built, all of the reservoirs have not yet been completed because of federal budgetary cutbacks. The tunnels themselves and one reservoir are currently able to temporarily store the combined sewage and the runoff from only the first 3/8-inch (.95 cm) of rain falling in the Metropolitan Water Reclamation District's service area. The extremely high expense of installing such a supplementary sewage and stormwater storage system would make it unaffordable to most cities unless very substantial federal and state grants are provided.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Sustainability: a comprehensive foundation. OpenStax CNX. Nov 11, 2013 Download for free at http://legacy.cnx.org/content/col11325/1.43
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Sustainability: a comprehensive foundation' conversation and receive update notifications?

Ask