<< Chapter < Page Chapter >> Page >

Population growth is regulated in a variety of ways. These are grouped into density-dependent factors, in which the density of the population affects growth rate and mortality, and density-independent factors, which cause mortality in a population regardless of population density. Wildlife biologists, in particular, want to understand both types because this helps them manage populations and prevent extinction or overpopulation.

Density-dependent regulation

Most density-dependent factors are biological in nature and include predation, inter- and intraspecific competition, and parasites. Usually, the denser a population is, the greater its mortality rate. For example, during intra- and interspecific competition, the reproductive rates of the species will usually be lower, reducing their populations’ rate of growth. In addition, low prey density increases the mortality of its predator because it has more difficulty locating its food source. Also, when the population is denser, diseases spread more rapidly among the members of the population, which affect the mortality rate.

Density dependent regulation was studied in a natural experiment with wild donkey populations on two sites in Australia. David Choquenot, “Density-Dependent Growth, Body Condition, and Demography in Feral Donkeys: Testing the Food Hypothesis,” Ecology 72, no. 3 (June 1991):805–813. On one site the population was reduced by a population control program; the population on the other site received no interference. The high-density plot was twice as dense as the low-density plot. From 1986 to 1987 the high-density plot saw no change in donkey density, while the low-density plot saw an increase in donkey density. The difference in the growth rates of the two populations was caused by mortality, not by a difference in birth rates. The researchers found that numbers of offspring birthed by each mother was unaffected by density. Growth rates in the two populations were different mostly because of juvenile mortality caused by the mother’s malnutrition due to scarce high-quality food in the dense population. [link] shows the difference in age-specific mortalities in the two populations.

 Graph with mortality rate from 0 to 0.7 on the Y axis and age in years from 0 to greater than or equal to 10.5 on the X axis. The mortality rate for the high-density population starts at about 0.6 at age 0 (near birth) then drops dramatically to about 0.03 at six months old, then climbs in a nearly straight line to reach about 0.2 at the age of 10.5 years. The mortality rate for the low-density population starts at about 0.2 at age 0 (near birth) then drops to about 0.06 at six months old, then gradually climbs only a small amount to reach about 0.1 at the age of 10.5 years.
This graph shows the age-specific mortality rates for wild donkeys from high- and low-density populations. The juvenile mortality is much higher in the high-density population because of maternal malnutrition caused by a shortage of high-quality food.

Density-independent regulation and interaction with density-dependent factors

Many factors that are typically physical in nature cause mortality of a population regardless of its density. These factors include weather, natural disasters, and pollution. An individual deer will be killed in a forest fire regardless of how many deer happen to be in that area. Its chances of survival are the same whether the population density is high or low. The same holds true for cold winter weather.

In real-life situations, population regulation is very complicated and density-dependent and independent factors can interact. A dense population that suffers mortality from a density-independent cause will be able to recover differently than a sparse population. For example, a population of deer affected by a harsh winter will recover faster if there are more deer remaining to reproduce.

Demographic-based population models

Population ecologists have hypothesized that suites of characteristics may evolve in species that lead to particular adaptations to their environments. These adaptations impact the kind of population growth their species experience. Life history characteristics such as birth rates, age at first reproduction, the numbers of offspring, and even death rates evolve just like anatomy or behavior, leading to adaptations that affect population growth. Population ecologists have described a continuum of life-history “strategies” with K -selected species on one end and r -selected species on the other. K -selected species    are adapted to stable, predictable environments. Populations of K -selected species tend to exist close to their carrying capacity. These species tend to have larger, but fewer, offspring and contribute large amounts of resources to each offspring. Elephants would be an example of a K -selected species. r -selected species    are adapted to unstable and unpredictable environments. They have large numbers of small offspring. Animals that are r -selected do not provide a lot of resources or parental care to offspring, and the offspring are relatively self-sufficient at birth. Examples of r -selected species are marine invertebrates such as jellyfish and plants such as the dandelion. The two extreme strategies are at two ends of a continuum on which real species life histories will exist. In addition, life history strategies do not need to evolve as suites, but can evolve independently of each other, so each species may have some characteristics that trend toward one extreme or the other.

Section summary

Populations with unlimited resources grow exponentially—with an accelerating growth rate. When resources become limiting, populations follow a logistic growth curve in which population size will level off at the carrying capacity.

Populations are regulated by a variety of density-dependent and density-independent factors. Life-history characteristics, such as age at first reproduction or numbers of offspring, are characteristics that evolve in populations just as anatomy or behavior can evolve over time. The model of r - and K -selection suggests that characters, and possibly suites of characters, may evolve adaptations to population stability near the carrying capacity ( K -selection) or rapid population growth and collapse ( r -selection). Species will exhibit adaptations somewhere on a continuum between these two extremes.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Environmental biology. OpenStax CNX. Aug 10, 2015 Download for free at https://legacy.cnx.org/content/col11863/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Environmental biology' conversation and receive update notifications?

Ask