<< Chapter < Page Chapter >> Page >
In the cross section the gray matter forms an X inside the oval white matter. The legs of the X are thicker than the arms. Each leg is called a ventral horn, and each arm is called a dorsal horn.
A cross-section of the spinal cord shows gray matter (containing cell bodies and interneurons) and white matter (containing myelinated axons).

The peripheral nervous system

The peripheral nervous system (PNS)    is the connection between the central nervous system and the rest of the body. The PNS can be broken down into the autonomic nervous system    , which controls bodily functions without conscious control, and the sensory-somatic nervous system    , which transmits sensory information from the skin, muscles, and sensory organs to the CNS and sends motor commands from the CNS to the muscles.

The autonomic nervous system is divided into sympathetic and parasympathetic systems. In the sympathetic system, the soma of the preganglionic neurons is usually located in the spine while in the parasympathetic system the soma is usually in the brainstem or sacral, at the bottom of the spine. In both systems, the preganglionic neuron releases the neurotransmitter acetylcholine into the synapse. Postganglionic neurons of the sympathetic system have somas in a sympathetic ganglion, located next to the spinal cord. Postganglionic neurons of the parasympathetic system have somas in ganglions near the target organ. Postganglionic neurons of the sympathetic system release norepinephrine into the synapse, while postganglionic neurons of the parasympathetic system release acetylcholine or nitric oxide.
In the autonomic nervous system, a preganglionic neuron (originating in the CNS) synapses to a neuron in a ganglion that, in turn, synapses on a target organ. Activation of the sympathetic nervous system causes release of norepinephrine on the target organ. Activation of the parasympathetic nervous system causes release of acetylcholine on the target organ.

The autonomic nervous system serves as the relay between the CNS and the internal organs. It controls the lungs, the heart, smooth muscle, and exocrine and endocrine glands. The autonomic nervous system controls these organs largely without conscious control; it can continuously monitor the conditions of these different systems and implement changes as needed. Signaling to the target tissue usually involves two synapses: a preganglionic neuron (originating in the CNS) synapses to a neuron in a ganglion that, in turn, synapses on the target organ ( [link] ). There are two divisions of the autonomic nervous system that often have opposing effects: the sympathetic nervous system and the parasympathetic nervous system.

The sympathetic nervous system    is responsible for the immediate responses an animal makes when it encounters a dangerous situation. One way to remember this is to think of the “fight-or-flight” response a person feels when encountering a snake (“snake” and “sympathetic” both begin with “s”). Examples of functions controlled by the sympathetic nervous system include an accelerated heart rate and inhibited digestion. These functions help prepare an organism’s body for the physical strain required to escape a potentially dangerous situation or to fend off a predator.

Illustration shows the effects of the sympathetic and parasympathetic systems on target organs, and the placement of the preganglionic neurons that mediate these effects. The parasympathetic system causes pupils and bronchi to constrict, slows the heart rate, and stimulates salivation, digestion, and bile secretion. Preganglionic neurons that mediate these effects are all located in the brain stem. Preganglionic neurons of the parasympathetic system that are located in the sacral cause the bladder to contract. The sympathetic system causes pupils and bronchi to dilate, increases heart rate, inhibits digestion, stimulates the breakdown of glycogen and the secretion of adrenaline and noradrenaline, and inhibits contraction of the bladder. The preganglionic neurons that mediate these effects are all located in the spine.
The sympathetic and parasympathetic nervous systems often have opposing effects on target organs.

While the sympathetic nervous system is activated in stressful situations, the parasympathetic nervous system    allows an animal to “rest and digest.” One way to remember this is to think that during a restful situation like a picnic, the parasympathetic nervous system is in control (“picnic” and “parasympathetic” both start with “p”). Parasympathetic preganglionic neurons have cell bodies located in the brainstem and in the sacral (toward the bottom) spinal cord ( [link] ). The parasympathetic nervous system resets organ function after the sympathetic nervous system is activated including slowing of heart rate, lowered blood pressure, and stimulation of digestion.

The sensory-somatic nervous system is made up of cranial and spinal nerves and contains both sensory and motor neurons. Sensory neurons transmit sensory information from the skin, skeletal muscle, and sensory organs to the CNS. Motor neurons transmit messages about desired movement from the CNS to the muscles to make them contract. Without its sensory-somatic nervous system, an animal would be unable to process any information about its environment (what it sees, feels, hears, and so on) and could not control motor movements. Unlike the autonomic nervous system, which usually has two synapses between the CNS and the target organ, sensory and motor neurons usually have only one synapse—one ending of the neuron is at the organ and the other directly contacts a CNS neuron.

Section summary

The nervous system is made up of neurons and glia. Neurons are specialized cells that are capable of sending electrical as well as chemical signals. Most neurons contain dendrites, which receive these signals, and axons that send signals to other neurons or tissues. Glia are non-neuronal cells in the nervous system that support neuronal development and signaling. There are several types of glia that serve different functions.

Neurons have a resting potential across their membranes and when they are stimulated by a strong enough signal from another neuron an action potential may carry an electrochemical signal along the neuron to a synapse with another neuron. Neurotransmitters carry signals across synapses to initiate a response in another neuron.

The vertebrate central nervous system contains the brain and the spinal cord, which are covered and protected by three meninges. The brain contains structurally and functionally defined regions. In mammals, these include the cortex (which can be broken down into four primary functional lobes: frontal, temporal, occipital, and parietal), basal ganglia, thalamus, hypothalamus, limbic system, cerebellum, and brainstem—although structures in some of these designations overlap. While functions may be primarily localized to one structure in the brain, most complex functions, like language and sleep, involve neurons in multiple brain regions. The spinal cord is the information superhighway that connects the brain with the rest of the body through its connections with peripheral nerves. It transmits sensory and motor input and also controls motor reflexes.

The peripheral nervous system contains both the autonomic and sensory-somatic nervous systems. The autonomic nervous system provides unconscious control over visceral functions and has two divisions: the sympathetic and parasympathetic nervous systems. The sympathetic nervous system is activated in stressful situations to prepare the animal for a “fight-or-flight” response. The parasympathetic nervous system is active during restful periods. The sensory-somatic nervous system is made of cranial and spinal nerves that transmit sensory information from skin and muscle to the CNS and motor commands from the CNS to the muscles.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University of georgia biology. OpenStax CNX. Dec 09, 2013 Download for free at https://legacy.cnx.org/content/col11585/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University of georgia biology' conversation and receive update notifications?

Ask