<< Chapter < Page Chapter >> Page >

Community ecology

A biological community consists of the different species within an area, typically a three-dimensional space, and the interactions within and among these species. Community ecologists are interested in the processes driving these interactions and their consequences. Questions about interactions between members of the same species often focus on competition a limited resource. Ecologists also study interactions that happen between different species. Examples of these types of interactions include predation, parasitism, herbivory, competition, and pollination. These interactions can have regulating effects on population sizes and can impact ecological and evolutionary processes affecting diversity.

For example, Karner blue butterfly larvae form mutualistic relationships with ants. Mutualism is a form of a long-term relationship that has coevolved between two species and from which each species benefits. For mutualism to exist between individual organisms, each species must receive some benefit from the other as a consequence of the relationship. Researchers have shown that there is an increase in the probability of survival when Karner blue butterfly larvae (caterpillars) are tended by ants. This might be because the larvae spend less time in each life stage when tended by ants, which provides an advantage for the larvae. Meanwhile, the Karner blue butterfly larvae secrete a carbohydrate-rich substance that is an important energy source for the ants. Both the Karner blue larvae and the ants benefit from their interaction.

Ecosystem ecology

Ecosystem ecology is an extension of organismal, population, and community ecology. The ecosystem is composed of all the biotic components (living things) in an area along with the abiotic components (non-living things) of that area. Some of the abiotic components include air, water, and soil. Ecosystem biologists ask questions about how nutrients and energy are stored and how they move among organisms and the surrounding atmosphere, soil, and water.

The Karner blue butterflies and the wild lupine live in an oak-pine barren habitat. This habitat is characterized by natural disturbance and nutrient-poor soils that are low in nitrogen. The availability of nutrients is an important factor in the distribution of the plants that live in this habitat. Researchers interested in ecosystem ecology could ask questions about the importance of limited resources and the movement of resources, such as nutrients, though the biotic and abiotic portions of the ecosystem.

Career connection

Ecologist

A career in ecology contributes to many facets of human society. Understanding ecological issues can help society meet the basic human needs of food, shelter, and health care. Ecologists can conduct their research in the laboratory and outside in natural environments ( [link] ). These natural environments can be as close to home as the stream running through your campus or as far away as the hydrothermal vents at the bottom of the Pacific Ocean. Ecologists manage natural resources such as white-tailed deer populations ( Odocoileus virginianus ) for hunting or aspen ( Populus spp.) timber stands for paper production. Ecologists also work as educators who teach children and adults at various institutions including universities, high schools, museums, and nature centers. Ecologists may also work in advisory positions assisting local, state, and federal policymakers to develop laws that are ecologically sound, or they may develop those policies and legislation themselves. To become an ecologist requires an undergraduate degree, usually in a natural science. The undergraduate degree is often followed by specialized training or an advanced degree, depending on the area of ecology selected. Ecologists should also have a broad background in the physical sciences, as well as a sound foundation in mathematics and statistics.

 This photo shows a woman looking into a small cage with its door open. The cage sits on short prairie grass, next to a hole with dirt around the rim. In the background sits a second, closed cage.
This landscape ecologist is releasing a black-footed ferret into its native habitat as part of a study. (credit: USFWS Mountain Prairie Region, NPS)

Visit this site to see Stephen Wing, a marine ecologist from the University of Otago, discuss the role of an ecologist and the types of issues ecologists explore.

Section summary

Ecology is the study of the interactions of living things with their environment. Ecologists ask questions across four levels of biological organization—organismal, population, community, and ecosystem. At the organismal level, ecologists study individual organisms and how they interact with their environments. At the population and community levels, ecologists explore, respectively, how a population of organisms changes over time and the ways in which that population interacts with other species in the community. Ecologists studying an ecosystem examine the living species (the biotic components) of the ecosystem as well as the nonliving portions (the abiotic components), such as air, water, and soil, of the environment.

Review questions

Which of the following is a biotic factor?

  1. wind
  2. disease-causing microbe
  3. temperature
  4. soil particle size

B

The study of nutrient cycling though the environment is an example of which of the following?

  1. organismal ecology
  2. population ecology
  3. community ecology
  4. ecosystem ecology

D

Free response

Ecologists often collaborate with other researchers interested in ecological questions. Describe the levels of ecology that would be easier for collaboration because of the similarities of questions asked. What levels of ecology might be more difficult for collaboration?

Ecologists working in organismal or population ecology might ask similar questions about how the biotic and abiotic conditions affect particular organisms and, thus, might find collaboration to be mutually beneficial. Levels of ecology such as community ecology or ecosystem ecology might pose greater challenges for collaboration because these areas are very broad and may include many different environmental components.

The population is an important unit in ecology as well as other biological sciences. How is a population defined, and what are the strengths and weaknesses of this definition? Are there some species that at certain times or places are not in populations?

It is beneficial to consider a population to be all of the individuals living in the same area at the same time because it allows the ecologist to identify and study all of the abiotic and biotic factors that may affect the members of the population. However, this definition of a population could be considered a drawback if it prohibits the ecologist from studying a population’s individuals that may be transitory, but still influential. Some species with members that have a wide geographic range might not be considered to be a population, but could still have many of the qualities of a population.

Glossary

  • abiotic: nonliving components of the environment
  • biotic: living components of the environment
  • ecology: study of interaction between living things and their environment

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Ecosistemas. OpenStax CNX. May 12, 2014 Download for free at http://legacy.cnx.org/content/col11650/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Ecosistemas' conversation and receive update notifications?

Ask