<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Discuss the fundamental difference between anaerobic cellular respiration and fermentation
  • Describe the type of fermentation that readily occurs in animal cells and the conditions that initiate that fermentation

In aerobic respiration, the final electron acceptor is an oxygen molecule, O 2 . If aerobic respiration occurs, then ATP will be produced using the energy of the high-energy electrons carried by NADH or FADH 2 to the electron transport chain. Some living systems use an organic molecule as the final electron acceptor. Processes that use an organic molecule to regenerate NAD + from NADH are collectively referred to as fermentation    . In contrast, some living systems use an inorganic molecule as a final electron acceptor; both methods are a type of anaerobic cellular respiration    . Anaerobic respiration enables organisms to convert energy for their use in the absence of oxygen.

Lactic acid fermentation

The fermentation method used by animals and some bacteria like those in yogurt is lactic acid fermentation ( [link] ). This occurs routinely in mammalian red blood cells and in skeletal muscle that has insufficient oxygen supply to allow aerobic respiration to continue (that is, in muscles used to the point of fatigue). In muscles, lactic acid produced by fermentation must be removed by the blood circulation and brought to the liver for further metabolism. The chemical reaction of lactic acid fermentation is the following:

Pyruvic acid  + NADH lactic acid + NAD +

Art connection

A graphic shows glucose undergoing glycolysis to become two pyruvate molecules, which then undergo fermentation to become two lactate molecules. During glycolysis, two NAD+ are converted into two high-energy NADH molecules, but during fermentation, these two NADH molecules are reoxidized to become two NAD+ again. NAD+ can then be used in glycolysis.
Lactic acid fermentation is common in muscles that have become exhausted by use.

Alcohol fermentation

Another familiar fermentation process is alcohol fermentation ( [link] ), which produces ethanol, an alcohol. The alcohol fermentation reaction is the following:

Graphic showing the alcohol fermentation reaction in an equation.
The reaction resulting in alcohol fermentation is shown.

In the first reaction, a carboxyl group is removed from pyruvic acid, releasing carbon dioxide as a gas. The loss of carbon dioxide reduces the molecule by one carbon atom, making acetaldehyde. The second reaction removes an electron from NADH, forming NAD + and producing ethanol from the acetaldehyde, which accepts the electron. The fermentation of pyruvic acid by yeast produces the ethanol found in alcoholic beverages ( [link] ). If the carbon dioxide produced by the reaction is not vented from the fermentation chamber, for example in beer and sparkling wines, it remains dissolved in the medium until the pressure is released. Ethanol above 12 percent is toxic to yeast, so natural levels of alcohol in wine occur at a maximum of 12 percent.

This photo shows large, silver-colored, cylindrical fermentation tanks.
Fermentation of grape juice to make wine produces CO 2 as a byproduct. Fermentation tanks have valves so that pressure inside the tanks can be released.

Anaerobic cellular respiration

Certain prokaryotes, including some species of bacteria and Archaea, use anaerobic respiration. For example, the group of Archaea called methanogens reduces carbon dioxide to methane to oxidize NADH. These microorganisms are found in soil and in the digestive tracts of ruminants, such as cows and sheep. Similarly, sulfate-reducing bacteria and Archaea, most of which are anaerobic ( [link] ), reduce sulfate to hydrogen sulfide to regenerate NAD + from NADH.

This photo shows a bloom of green bacteria in water.
The green color seen in these coastal waters is from an eruption of hydrogen sulfide. Anaerobic, sulfate-reducing bacteria release hydrogen sulfide gas as they decompose algae in the water. (credit: NASA image courtesy Jeff Schmaltz, MODIS Land Rapid Response Team at NASA GSFC)

Concept in action

Visit this site to see anaerobic cellular respiration in action.

Other fermentation methods occur in bacteria. Many prokaryotes are facultatively anaerobic. This means that they can switch between aerobic respiration and fermentation, depending on the availability of oxygen. Certain prokaryotes, like Clostridia bacteria, are obligate anaerobes. Obligate anaerobes live and grow in the absence of molecular oxygen. Oxygen is a poison to these microorganisms and kills them upon exposure.

Section summary

If NADH cannot be metabolized through aerobic respiration, another electron acceptor is used. Most organisms will use some form of fermentation to accomplish the regeneration of NAD + , ensuring the continuation of glycolysis.

Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Environmental biology. OpenStax CNX. Aug 10, 2015 Download for free at https://legacy.cnx.org/content/col11863/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Environmental biology' conversation and receive update notifications?

Ask