<< Chapter < Page Chapter >> Page >

Making connections: force and momentum

Force and momentum are intimately related. Force acting over time can change momentum, and Newton’s second law of motion, can be stated in its most broadly applicable form in terms of momentum. Momentum continues to be a key concept in the study of atomic and subatomic particles in quantum mechanics.

This statement of Newton’s second law of motion includes the more familiar F net = m a as a special case. We can derive this form as follows. First, note that the change in momentum Δ p size 12{Δp} {} is given by

Δ p = Δ ( m v ) . size 12{Δp=Δ left (mv right )} {}

If the mass of the system is constant, then

Δ ( m v ) = m Δ v . size 12{Δ left (mv right )=mΔv} {}

So that for constant mass, Newton’s second law of motion becomes

F net = Δ p Δ t = m Δ v Δ t . size 12{ F rSub { size 8{"net"} } = { {Δp} over {Δt} } = { {mΔv} over {Δt} } "." } {}

Because Δ v Δ t = a size 12{ { {Δv} over {Δt} } =a} {} , we get the familiar equation

F net = m a

when the mass of the system is constant .

Newton’s second law of motion stated in terms of momentum is more generally applicable because it can be applied to systems where the mass is changing, such as rockets, as well as to systems of constant mass. We will consider systems with varying mass in some detail ; however, the relationship between momentum and force remains useful when mass is constant, such as in the following example.

Calculating force: venus williams’ racquet

During the 2007 French Open, Venus Williams hit the fastest recorded serve in a premier women’s match, reaching a speed of 58 m/s (209 km/h). What is the average force exerted on the 0.057-kg tennis ball by Venus Williams’ racquet, assuming that the ball’s speed just after impact is 58 m/s, that the initial horizontal component of the velocity before impact is negligible, and that the ball remained in contact with the racquet for 5.0 ms (milliseconds)?

Strategy

This problem involves only one dimension because the ball starts from having no horizontal velocity component before impact. Newton’s second law stated in terms of momentum is then written as

F net = Δ p Δ t . size 12{ F rSub { size 8{"net"} } = { {Δp} over {Δt} } = { {mΔv} over {Δt} } "." } {}

As noted above, when mass is constant, the change in momentum is given by

Δ p = m Δ v = m v f v i . size 12{Δp=mΔv=m left (v rSub { size 8{f} } - v rSub { size 8{i} } right )} {}

In this example, the velocity just after impact and the change in time are given; thus, once Δ p size 12{Δp} {} is calculated, F net = Δ p Δ t size 12{ F rSub { size 8{"net"} } = { {Δp} over {Δt} } } {} can be used to find the force.

Solution

To determine the change in momentum, substitute the values for the initial and final velocities into the equation above.

Δ p = m v f v i = 0.057 kg 58 m/s 0 m/s = 3 .306 kg · m/s 3.3 kg · m/s

Now the magnitude of the net external force can determined by using F net = Δ p Δ t size 12{ F rSub { size 8{"net"} } = { {Δp} over {Δt} } } {} :

F net = Δ p Δ t = 3.306 kg m/s 5 . 0 × 10 3 s = 661 N 660 N, alignl { stack { size 12{ F rSub { size 8{"net"} } = { {Δp} over {Δt} } = { {3 "." "306"`"kg" cdot "m/s"} over {5 "." 0 times "10" rSup { size 8{ - 3} } `s} } } {} #" "="661 N" approx "660"`"N," {} } } {}

where we have retained only two significant figures in the final step.

Discussion

This quantity was the average force exerted by Venus Williams’ racquet on the tennis ball during its brief impact (note that the ball also experienced the 0.56-N force of gravity, but that force was not due to the racquet). This problem could also be solved by first finding the acceleration and then using F net = ma size 12{F rSub { size 8{"net"} } " = " ital "ma"} {} , but one additional step would be required compared with the strategy used in this example.

Section summary

  • Linear momentum ( momentum for brevity) is defined as the product of a system’s mass multiplied by its velocity.
  • In symbols, linear momentum p is defined to be
    p = m v , size 12{p=mv} {}
    where m size 12{m} {} is the mass of the system and v size 12{v} {} is its velocity.
  • The SI unit for momentum is kg · m/s size 12{"kg" cdot "m/s"} {} .
  • Newton’s second law of motion in terms of momentum states that the net external force equals the change in momentum of a system divided by the time over which it changes.
  • In symbols, Newton’s second law of motion is defined to be
    F net = Δ p Δ t , size 12{ F rSub { size 8{"net"} } = { {Δp} over {Δt} } = { {mΔv} over {Δt} } "." } {}
    F net is the net external force, Δ p size 12{Δp} {} is the change in momentum, and Δ t size 12{Δt} {} is the change time.

Conceptual questions

An object that has a small mass and an object that has a large mass have the same momentum. Which object has the largest kinetic energy?

An object that has a small mass and an object that has a large mass have the same kinetic energy. Which mass has the largest momentum?

How can a small force impart the same momentum to an object as a large force?

Problems&Exercises

(a) Calculate the momentum of a 2000-kg elephant charging a hunter at a speed of 7 . 50 m/s size 12{7 "." "50"``"m/s"} {} . (b) Compare the elephant’s momentum with the momentum of a 0.0400-kg tranquilizer dart fired at a speed of 600 m/s size 12{"600"``"m/s"} {} . (c) What is the momentum of the 90.0-kg hunter running at 7 . 40 m/s size 12{7 "." "40"``"m/s"} {} after missing the elephant?

(a) 1.50 × 10 4 kg m/s size 12{1 "." "50" times "10" rSup { size 8{4} } `"kg" cdot "m/s"} {}

(b) 625 to 1

(c) 6 . 66 × 10 2 kg m/s size 12{6 "." "66" times "10" rSup { size 8{2} } `"kg" cdot "m/s"} {}

A runaway train car that has a mass of 15,000 kg travels at a speed of 5 .4 m/s size 12{5 "." 4`"m/s"} {} down a track. Compute the time required for a force of 1500 N to bring the car to rest.

54 s

Questions & Answers

I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
What would be the best educational aid(s) for gifted kids/savants?
Heidi Reply
treat them normal, if they want help then give them. that will make everyone happy
Saurabh
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Unit 6 - momentum. OpenStax CNX. Jan 22, 2016 Download for free at https://legacy.cnx.org/content/col11961/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Unit 6 - momentum' conversation and receive update notifications?

Ask