<< Chapter < Page Chapter >> Page >

( 9 y ) 4 = 9 ( y 4 ) Both represent the same product .

Got questions? Get instant answers now!

Practice set b

Fill in the ( ) to make each statement true. Use the associative properties.

( 9 + 2 ) + 5 = 9 + ( )

2 + 5

Got questions? Get instant answers now!

x + ( 5 + y ) = ( ) + y

x + 5

Got questions? Get instant answers now!

( 11 a ) 6 = 11 ( )

a 6

Got questions? Get instant answers now!

[ ( 7 m 2 ) ( m + 3 ) ] ( m + 4 ) = ( 7 m 2 ) [ ( ) ( ) ]

( m + 3 ) ( m + 4 )

Got questions? Get instant answers now!

Sample set c

Simplify (rearrange into a simpler form): 5 x 6 b 8 a c 4 .

According to the commutative property of multiplication, we can make a series of consecutive switches and get all the numbers together and all the letters together.

5 6 8 4 x b a c 960 x b a c Multiply the numbers . 960 a b c x By convention, we will, when possible, write all letters in alphabetical order .

Got questions? Get instant answers now!

Practice set c

Simplify each of the following quantities.

6 b 8 a c z 4 5

960 a b c z

Got questions? Get instant answers now!

4 p 6 q r 3 ( a + b )

72 p q r ( a + b )

Got questions? Get instant answers now!

The distributive properties

When we were first introduced to multiplication we saw that it was developed as a description for repeated addition.

4 + 4 + 4 = 3 4

Notice that there are three 4’s, that is, 4 appears 3 times . Hence, 3 times 4.
We know that algebra is generalized arithmetic. We can now make an important generalization.

When a number a is added repeatedly n times, we have
a + a + a + + a a appears n times
Then, using multiplication as a description for repeated addition, we can replace
a + a + a + + a n times with n a

For example:

x + x + x + x can be written as 4 x since x is repeatedly added 4 times.

x + x + x + x = 4 x

Got questions? Get instant answers now!

r + r can be written as 2 r since r is repeatedly added 2 times.

r + r = 2 r

Got questions? Get instant answers now!

The distributive property involves both multiplication and addition. Let’s rewrite 4 ( a + b ) . We proceed by reading 4 ( a + b ) as a multiplication: 4 times the quantity ( a + b ) . This directs us to write

4 ( a + b ) = ( a + b ) + ( a + b ) + ( a + b ) + ( a + b ) = a + b + a + b + a + b + a + b

Now we use the commutative property of addition to collect all the a ' s together and all the b ' s together.

4 ( a + b ) = a + a + a + a 4 a ' s + b + b + b + b 4 b ' s

Now, using multiplication as a description for repeated addition, we have

4 ( a + b ) = 4 a + 4 b

We have distributed the 4 over the sum to both a and b .

The product of four and the expression, a plus b, is equal to four a plus four b. The distributive property is shown by the arrows from four to each term of expression a plus b in the product.

The distributive property

a ( b + c ) = a b + a c ( b + c ) a = a b + a c

The distributive property is useful when we cannot or do not wish to perform operations inside parentheses.

Sample set d

Use the distributive property to rewrite each of the following quantities.

Practice set d

What property of real numbers justifies
a ( b + c ) = ( b + c ) a ?

the commutative property of multiplication

Got questions? Get instant answers now!

Use the distributive property to rewrite each of the following quantities.

The identity properties

Additive identity

The number 0 is called the additive identity since when it is added to any real number, it preserves the identity of that number. Zero is the only additive identity.
For example, 6 + 0 = 6 .

Multiplicative identity

The number 1 is called the multiplicative identity since when it multiplies any real number, it preserves the identity of that number. One is the only multiplicative identity.
For example 6 1 = 6 .

We summarize the identity properties as follows.

ADDITIVE IDENTITY PROPERTY MULTIPLICATIVE IDENTITY PROPERTY If a is a real number, then If a is a real number, then a + 0 = a and 0 + a = a a 1 = a and 1 a = a

The inverse properties

Additive inverses

When two numbers are added together and the result is the additive identity, 0, the numbers are called additive inverses of each other. For example, when 3 is added to 3 the result is 0, that is, 3 + ( 3 ) = 0 . The numbers 3 and 3 are additive inverses of each other.

Multiplicative inverses

When two numbers are multiplied together and the result is the multiplicative identity, 1, the numbers are called multiplicative inverses of each other. For example, when 6 and 1 6 are multiplied together, the result is 1, that is, 6 1 6 = 1 . The numbers 6 and 1 6 are multiplicative inverses of each other.

We summarize the inverse properties as follows.

    The inverse properties

  1. If a is any real number, then there is a unique real number a , such that
    a + ( a ) = 0 and a + a = 0
    The numbers a and a are called additive inverses of each other.
  2. If a is any nonzero real number, then there is a unique real number 1 a such that
    a 1 a = 1 and 1 a a = 1
    The numbers a and 1 a are called multiplicative inverses of each other.

Expanding quantities

When we perform operations such as 6 ( a + 3 ) = 6 a + 18 , we say we are expanding the quantity 6 ( a + 3 ) .

Exercises

Use the commutative property of addition and multiplication to write expressions for an equal number for the following problems. You need not perform any calculations.

( x + 16 ) ( a + 7 )

( a + 7 ) ( x + 16 )

Got questions? Get instant answers now!

5 ( 6 h + 1 )

( 6 h + 1 ) 5

Got questions? Get instant answers now!

k ( 10 a b )

( 10 a b ) k

Got questions? Get instant answers now!

( 16 ) ( 4 )

( 4 ) ( 16 )

Got questions? Get instant answers now!

Got questions? Get instant answers now!

Simplify using the commutative property of multiplication for the following problems. You need not use the distributive property.

1 u 3 r 2 z 5 m 1 n

30 m n r u z

Got questions? Get instant answers now!

6 d 4 e 1 f 2 ( g + 2 h )

Got questions? Get instant answers now!

( 1 2 ) d ( 1 4 ) e ( 1 2 ) a

1 16 a d e

Got questions? Get instant answers now!

3 ( a + 6 ) 2 ( a 9 ) 6 b

Got questions? Get instant answers now!

1 ( x + 2 y ) ( 6 + z ) 9 ( 3 x + 5 y )

9 ( x + 2 y ) ( 6 + z ) ( 3 x + 5 y )

Got questions? Get instant answers now!

For the following problems, use the distributive property to expand the quantities.

z ( x + 9 w )

x z + 9 w z

Got questions? Get instant answers now!

( 8 + 2 f ) g

8 g + 2 f g

Got questions? Get instant answers now!

15 x ( 2 y + 3 z )

30 x y + 45 x z

Got questions? Get instant answers now!

z ( x + y + m )

x z + y z + m z

Got questions? Get instant answers now!

( x + 10 ) ( a + b + c )

a x + b x + c x + 10 a + 10 b + 10 c

Got questions? Get instant answers now!

Use a calculator. 21.5 ( 16.2 a + 3.8 b + 0.7 c )

348.3 a + 81.7 b + 15.05 c

Got questions? Get instant answers now!

2 z t ( L m + 8 k )

2 L m z t + 16 k z t

Got questions? Get instant answers now!

Exercises for review

( [link] ) Find the value of 4 2 + 5 ( 2 4 6 ÷ 3 ) 2 5 .

Got questions? Get instant answers now!

( [link] ) Is the statement 3 ( 5 3 3 5 ) + 6 2 3 4 < 0 true or false?

false

Got questions? Get instant answers now!

( [link] ) Draw a number line that extends from 2 to 2 and place points at all integers between and including 2 and 3.

Got questions? Get instant answers now!

( [link] ) Replace the with the appropriate relation symbol ( < , > ) . 7 3 .

<

Got questions? Get instant answers now!

( [link] ) What whole numbers can replace x so that the statement 2 x < 2 is true?

Got questions? Get instant answers now!

Questions & Answers

what is decentralised
mithlesh Reply
Ayele, K., 2003. Introductory Economics, 3rd ed., Addis Ababa.
Widad Reply
can you send the book attached ?
Ariel
?
Ariel
What is economics
Widad Reply
the study of how humans make choices under conditions of scarcity
AI-Robot
U(x,y) = (x×y)1/2 find mu of x for y
Desalegn Reply
U(x,y) = (x×y)1/2 find mu of x for y
Desalegn
what is ecnomics
Jan Reply
this is the study of how the society manages it's scarce resources
Belonwu
what is macroeconomic
John Reply
macroeconomic is the branch of economics which studies actions, scale, activities and behaviour of the aggregate economy as a whole.
husaini
etc
husaini
difference between firm and industry
husaini Reply
what's the difference between a firm and an industry
Abdul
firm is the unit which transform inputs to output where as industry contain combination of firms with similar production 😅😅
Abdulraufu
Suppose the demand function that a firm faces shifted from Qd  120 3P to Qd  90  3P and the supply function has shifted from QS  20  2P to QS 10  2P . a) Find the effect of this change on price and quantity. b) Which of the changes in demand and supply is higher?
Toofiq Reply
explain standard reason why economic is a science
innocent Reply
factors influencing supply
Petrus Reply
what is economic.
Milan Reply
scares means__________________ends resources. unlimited
Jan
economics is a science that studies human behaviour as a relationship b/w ends and scares means which have alternative uses
Jan
calculate the profit maximizing for demand and supply
Zarshad Reply
Why qualify 28 supplies
Milan
what are explicit costs
Nomsa Reply
out-of-pocket costs for a firm, for example, payments for wages and salaries, rent, or materials
AI-Robot
concepts of supply in microeconomics
David Reply
economic overview notes
Amahle Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Elementary algebra. OpenStax CNX. May 08, 2009 Download for free at http://cnx.org/content/col10614/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Elementary algebra' conversation and receive update notifications?

Ask