<< Chapter < Page Chapter >> Page >

Vector spaces are the principal object of study in linear algebra. A vector space is always defined with respectto a field of scalars.

Fields

A field is a set F equipped with two operations, addition and mulitplication, and containing two special members 0 and 1( 0 1 ), such that for all a b c F

    • a b F
    • a b b a
    • ( a + b ) + c a + ( b + c )
    • a 0 a
    • there exists a such that a a 0
    • a b F
    • a b b a
    • a b c a b c
    • a 1 a
    • there exists a such that a a 1
  • a b c a b a c
More concisely
  • F is an abelian group under addition
  • F is an abelian group under multiplication
  • multiplication distributes over addition

Examples

,,

Vector spaces

Let F be a field, and V a set. We say V is a vector space over F if there exist two operations, defined for all a F , u V and v V :

  • vector addition: ( u , v ) u v V
  • scalar multiplication: ( a , v ) a v V
and if there exists an element denoted 0 V , such that the following hold for all a F , b F , and u V , v V , and w V
    • u + ( v + w ) ( u + v ) + w
    • u v v u
    • u 0 u
    • there exists u such that u u 0
    • a u v a u a v
    • a b u a u b u
    • a b u a b u
    • 1 u u
More concisely,
  • V is an abelian group under plus
  • Natural properties of scalar multiplication

Examples

  • N is a vector space over
  • N is a vector space over
  • N is a vector space over
  • N is not a vector space over
The elements of V are called vectors .

Euclidean space

Throughout this course we will think of a signal as a vector x x 1 x 2 x N x 1 x 2 x N The samples x i could be samples from a finite duration, continuous time signal, for example.

A signal will belong to one of two vector spaces:

Real euclidean space

x N (over)

Complex euclidean space

x N (over)

Subspaces

Let V be a vector space over F .

A subset S V is called a subspace of V if S is a vector space over F in its own right.

V 2 , F , S any line though the origin .

S is any line through the origin.

Are there other subspaces?

Got questions? Get instant answers now!

S V is a subspace if and only if for all a F and b F and for all s S and t S , a s b t S

Linear independence

Let u 1 , , u k V .

We say that these vectors are linearly dependent if there exist scalars a 1 , , a k F such that

i 1 k a i u i 0
and at least one a i 0 .

If only holds for the case a 1 a k 0 , we say that the vectors are linearly independent .

1 1 -1 2 2 -2 3 0 1 -5 7 -2 0 so these vectors are linearly dependent in 3 .

Got questions? Get instant answers now!

Spanning sets

Consider the subset S v 1 v 2 v k . Define the span of S < S > span S i 1 k a i v i a i F

Fact: < S > is a subspace of V .

V 3 , F , S v 1 v 2 , v 1 1 0 0 , v 2 0 1 0 < S > xy-plane .

< S > is the xy-plane.
Got questions? Get instant answers now!

Aside

If S is infinite, the notions of linear independence and span are easily generalized:

We say S is linearly independent if, for every finite collection u 1 , , u k S , ( k arbitrary) we have i 1 k a i u i 0 i a i 0 The span of S is < S > i 1 k a i u i a i F u i S k

In both definitions, we only consider finite sums.

Bases

A set B V is called a basis for V over F if and only if

  • B is linearly independent
  • < B > V
Bases are of fundamental importance in signal processing. They allow us to decompose a signal into building blocks (basisvectors) that are often more easily understood.

V = (real or complex) Euclidean space, N or N . B e 1 e N standard basis e i 0 1 0 where the 1 is in the i th position.

Got questions? Get instant answers now!

V N over. B u 1 u N which is the DFT basis. u k 1 2 k N 2 k N N 1 where -1 .

Got questions? Get instant answers now!

Key fact

If B is a basis for V , then every v V can be written uniquely (up to order of terms) in the form v i 1 N a i v i where a i F and v i B .

Other facts

  • If S is a linearly independent set, then S can be extended to a basis.
  • If < S > V , then S contains a basis.

Questions & Answers

I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
What would be the best educational aid(s) for gifted kids/savants?
Heidi Reply
treat them normal, if they want help then give them. that will make everyone happy
Saurabh
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Digital signal processing: a user's guide. OpenStax CNX. Aug 29, 2006 Download for free at http://cnx.org/content/col10372/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Digital signal processing: a user's guide' conversation and receive update notifications?

Ask