<< Chapter < Page Chapter >> Page >

Range of rational function

The set of real values of rational polynomial for real values of x need not be the range of the function. It is because rational function is not defined for zeroes of polynomial in denominator. In previous section, we evaluated values of function for real x. But, domain may not be the real number set, but subset of R, which excludes certain values of x. We need to exclude values of “y”, which corresponds to values of x for which denominator becomes zero. This statement, however, is slightly confusing, because function is not defined for those values of x in the first place. How would we determine values of y corresponding to values of x for which function reduces to indeterminate form involving division by zero. We actually determine limiting values of function at these points and exclude those values of y from the real set of y, which is determined assuming x belonging to R.

There are certain cases in which denominator of the rational function can not become zero. Consider rational functions :

f x = 2 x 2 x + 1 x 2 + 1 g x = x + 1 2 x 2 x + 1 h x = 2 x 2 x + 1 | x | + 1

The denominators of all these functions can not be zero. Under this condition, domain of the function is real number set R.

Problem : Find the range of function :

f x = x 1 + x 2

Solution : The denominator of the given rational function can not be zero. Hence, domain of function is real number set R. There is no exclusion point. Rearranging to form a quadratic equation in x, we have :

y + y x 2 = x

y x 2 x + y = 0

We should analyze for coefficient of “ x 2 ” in the quadratic equation. For quadratic equation, coefficient of “ x 2 ” can not be zero i.e. y ≠ 0. For real x, y ≠ 0 and D≥0 :

D = - 1 2 4 X y X y = 1 4 y 2 0 y 2 1 4 y [ - 1 2 , 1 2 ]

What if y=0? Putting this value in the quadratic equation, we have :

0 x + 0 = 0

x = 0

This is included in the domain. Hence, y=0 is included in the range. The range of the rational function, therefore, remains unaffected :

y [ - 1 2 , 1 2 ]

Problem : Find the range of the function :

y = f x = x 2 5 x + 4 x 2 3 x + 2

Solution : We see that discrimanants of numerator and denominator polynomials are positive. On factorizing,

y = x 2 5 x + 4 x 2 3 x + 2 = x 1 x 4 x 1 x 2

Clearly, rational function is not defined for x=1 and x=2. Domain of the function is R- {1,2). For the sake of determining range, the limiting values of function for these values of x are obtained by canceling (x-1) from numerator and denominator :

y = x 4 x 2

For x=1, y = 3. For x=2, however, the function value is indeterminate. In totality, we need to exclude y=3 from the interval of real values of y. Now, in order to determine real values of y, we rearrange the given function to form a quadratic equation in x :

y x 2 3 y x + 2 y = x 2 5 x + 4 y 1 x 2 + 5 3 y x + 2 y 4 = 0

We should analyze for coefficient of “ x 2 ” in the quadratic equation. For quadratic equation, coefficient of “ x 2 ” can not be zero i.e. y-1 ≠ 0. For real x, y-1 ≠ 0 and D≥0.

For y-1 = 0, y = 1. Putting this value in the quadratic equation,

0 + 5 3 x + 2 4 = 0 x = 1

We see that x=1 is not part of domain. This is actually the value which reduces denominator to zero. Hence, we should exclude y = 1 from the real values of y. Now for D≥0,

D = 5 3 y 2 4 y 1 2 y 4 0 25 + 9 y 2 30 y 4 { 2 y 2 6 y + 4 } 0 25 + 9 y 2 30 y 4 { 2 y 2 6 y + 4 } 0

The coefficient of y 2 is positive. The discriminant is 0. Clearly, following sign rule, f(x) ≥0 for all real values of y. Hence, real values of y are real number set R. However, we need to exclude y = {1,3) as discussed above. Therefore, range of given function is R-{1,3}.

Alternative

Once, exception points are noted, we can evaluate “y” from the reduced form :

y = x 4 x 2

Solving,

x = 2 y - 4 y 1

Clearly, y#1. But we have seen that y#3 as well. Hence, range of rational function is R-{1,3}.

Graph of rational function

We know that rational function is a composition of two functions in the following form,

f x = p x q x

where q(x) ≠ 0. If q(x) = 0, then the ratio has the form “ x / 0 ”, which is not defined.

For plotting, let us consider a simple rational function given by, f x = 1 / x . This function is known as reciprocal function. It is not defined for x = 0. In order to plot the function, we calculate few initial values as :

F o r x = - 1, y = - 1

F o r x = - 2, y = - 0.5

F o r x = - 3, y = - 0.33

F o r x = 0, y is not defined

F o r x = 1, y = 1

F o r x = 2, y = 0.5

F o r x = 3, y = 0.33

The graph of the function is shown here :

Rational function

This plot is not defined at x = 0.

This plot is not defined at x = 0. The domain of the given function, therefore, is real numbers, “R” except zero. Also,

x = 1 y

This means that function value can not be zero. Hence, range of the function is also real numbers, “R” except zero.

D o m a i n = R { 0 }

R a n g e = R { 0 }

Problem : Draw the graph of rational function given by :

f x = x 2 1 x 1

Discuss the nature of graph and also determine domain and range of the given function.

Solution : The form of the given function is that of rational function. We observe that the function is not defined for "x = 1" as function has the form " x / 0 ", which is undefined. The domain of the given function, therefore, is “R” except “1”. It should be noted that while interpreting domain or range we should not cancel out common terms in the numerator and denominator.

For other values of “x”, the value of the function is given by the reduced expression :

f x = x 2 1 x 1 = x + 1

Clearly, if the given function were valid for x =1, then y = x+1 = 1 + 1 = 2. Thus, function f(x) can take any real value except “2”. Hence, range of the function is "R" except "2". The domain and range of the given function are :

D o m a i n = R { 1 }

R a n g e = R { 2 }

In order to plot the function, we calculate few initial values as :

F o r x = - 3, y = 2

F o r x = - 2, y = 1

F o r x = - 1, y = 0

F o r x = 0, y = 1

F o r x = 1, y is not defined

F o r x = 2, y = 3

F o r x = 3, y = 4

The graph of the function is shown here :

Rational function

The plot is not defined at x = 1.

The plot is not defined at x = 1. There is a break at x = 1.

Nature of graph

Here, we consider graphs of rational functions of type :

y = 1 x , 1 x 3 , 1 x 5 ,.............

The nature of graph of these rational function of type y = 1 x n , where n is an odd integer such that n≥ 1, is similar to graph of y=1/x as shown in the figure. The graph is that of rectangular hyperbola.

Rational function

Graph of rational function.

We need to emphasize that the graph generalizes the nature and is helpful to estimate domain and range of functions. We need to graph individual function if required. The nature of graph of function type y = 1 x n , where n is an even integer such that n≥2 is shown in the figure below :

y = 1 x 2 , 1 x 4 , 1 x 4 ,.............

Rational function

Graph of rational function.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Functions. OpenStax CNX. Sep 23, 2008 Download for free at http://cnx.org/content/col10464/1.64
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Functions' conversation and receive update notifications?

Ask