<< Chapter < Page Chapter >> Page >

Proof of the sampling theorem

The above discussion has already shown the sampling theorem in an informal and intuitive way that could easily be refined into a formal proof. However, the original proof of the sampling theorem, which will be given here, provides the interesting observation that the samples of a signal with period T s provide Fourier series coefficients for the original signal spectrum on ( - π / T s , π / T s ) .

Let x be a ( - π / T s , π / T s ) bandlimited signal and x s be its samples with sampling period T s . We can represent x in terms of its spectrum X using the inverse continuous time Fourier transfrom and the fact that x is bandlimited. The result is

x ( t ) = 1 2 π - π / T s π / T s X ( ω ) e j ω t d ω

This representation of x may then be sampled with sampling period T s to produce

x s ( n ) = x s ( n T s ) = 1 2 π - π / T s π / T s X ( ω ) e j ω n T s d ω

Noticing that this indicates that x s ( n ) is the n th continuous time Fourier series coefficient for X ( ω ) on the interval ( - π / T s , π / T s ) , it is shown that the samples determine the original spectrum X ( ω ) and, by extension, the original signal itself.

Perfect reconstruction

Another way to show the sampling theorem is to derive the reconstruction formula that gives the original signal x ˜ = x from its samples x s with sampling period T s , provided x is bandlimited to ( - π / T s , π / T s ) . This is done in the module on perfect reconstruction. However, the result, known as the Whittaker-Shannon reconstruction formula, will be stated here. If the requisite conditions hold, then the perfect reconstruction is given by

x ( t ) = n = - x s ( n ) sinc ( t / T s - n )

where the sinc function is defined as

sinc ( t ) = sin ( π t ) π t .

From this, it is clear that the set

sinc ( t / T s - n ) | n Z

forms an orthogonal basis for the set of ( - π / T s , π / T s ) bandlimited signals, where the coefficients of a ( - π / T s , π / T s ) signal in this basis are its samples with sampling period T s .

Practical implications

Discrete time processing of continuous time signals

The Nyquist-Shannon Sampling Theorem and the Whittaker-Shannon Reconstruction formula enable discrete time processing of continuous time signals. Because any linear time invariant filter performs a multiplication in the frequency domain, the result of applying a linear time invariant filter to a bandlimited signal is an output signal with the same bandlimit. Since sampling a bandlimited continuous time signal above the Nyquist rate produces a discrete time signal with a spectrum of the same form as the original spectrum, a discrete time filter could modify the samples spectrum and perfectly reconstruct the output to produce the same result as a continuous time filter. This allows the use of digital computing power and flexibility to be leveraged in continuous time signal processing as well. This is more thouroughly described in the final module of this chapter.

Psychoacoustics

The properties of human physiology and psychology often inform design choices in technologies meant for interactin with people. For instance, digital devices dealing with sound use sampling rates related to the frequency range of human vocalizations and the frequency range of human auditory sensativity. Because most of the sounds in human speech concentrate most of their signal energy between 5 Hz and 4 kHz, most telephone systems discard frequencies above 4 kHz and sample at a rate of 8 kHz. Discarding the frequencies greater than or equal to 4 kHz through use of an anti-aliasing filter is important to avoid aliasing, which would negatively impact the quality of the output sound as is described in a later module. Similarly, human hearing is sensitive to frequencies between 20 Hz and 20 kHz. Therefore, sampling rates for general audio waveforms placed on CDs were chosen to be greater than 40 kHz, and all frequency content greater than or equal to some level is discarded. The particular value that was chosen, 44.1 kHz, was selected for other reasons, but the sampling theorem and the range of human hearing provided a lower bound for the range of choices.

Sampling theorem summary

The Nyquist-Shannon Sampling Theorem states that a signal bandlimited to ( - π / T s , π / T s ) can be reconstructed exactly from its samples with sampling period T s . The Whittaker-Shannon interpolation formula, which will be further described in the section on perfect reconstruction, provides the reconstruction of the unique ( - π / T s , π / T s ) bandlimited continuous time signal that samples to a given discrete time signal with sampling period T s . This enables discrete time processing of continuous time signals, which has many powerful applications.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Signals and systems. OpenStax CNX. Aug 14, 2014 Download for free at http://legacy.cnx.org/content/col10064/1.15
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Signals and systems' conversation and receive update notifications?

Ask