<< Chapter < Page Chapter >> Page >

Introduction

The purpose of this project lab is to introduce how to further manipulate data acquired in grayscale mode and then expand this to the realm of color. This lab is meant as a follow-up to “Video Processing Part 1: Introductory Exercise,”. This lab will implement a grayscale auto-contrast and color image manipulation.

You will complete an introductory exercise to demonstrate your familiarity with the IDK programming environment. You will then complete an introductory exercise in how to use color; and modify a C skeleton to apply simple color masks to video input from the camera.

After this lab, you should be able to effectively and efficiently manipulate grayscale images, as well as modify color images.

You may want to refer to the following TI manuals:

Prelab

Having familiarized yourself with grayscale images in the previous project lab, the first part of the prelab will require you to code a function similar to the flip_invert function you have already designed, while the second part of the prelab will introduce how to use and access color images.

Grayscale

In this part of the prelab exercise, you will develop an algorithm to find the maximum and minimum values of a grayscale input image. Create a function that will process one row of the image at a time and find the overall minimum and maximum intensities in the image.

auto_contrast_find_extrema(in_data, min, max, col)

Color

The NTSC camera acquires images in the color format YCbCr, where Y represents luminosity, Cb the blue component, and Cr the red component. Each image must be converted to 16-bit RGB for output on a standard color computer monitor. The function “ycbcr422pl_to_rgb565” performs this conversion. Knowing how this function converts each pixel to RGB is relatively unimportant, however, knowing the packed (5:6:5) RBG format is essential.

Before we ignore the ycbcr422pl_to_rgb565 function completely, it is useful to look at how it operates. Find the run time of the function by examining the file “ycbcr422pl_to_rgb565.c” and note that it must convert an even number of pixels at a time. If it were possible to have this function process the whole color image at in one function call, how many clock cycles would the function take? Since we are limited in the number of rows we can modify at a time, how many clock cycles should it take to process the whole image one row at a time? To demonstrate the overhead needed for this function, note how many clock cycles the function would take if it converted the whole image two pixels at a time.

RGB (5:6:5). A packed RGB pixel holds 5 bits for red, 6 bits for green, and 5 bits for blue.

Since each color is not individually addressable in the packed RGB format (e.g. bits representing red and blue are stored in the same byte), being able to modify different bits of each byte is necessary. To help clarify what bits are being set/cleared/toggled, numbers can be represented in hex format. For example, the integer 58 can be represented by “00111010” in binary or by “3A” in hex. In C, hex numbers are indicated with the prefix “0x.”

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Ece 320 spring 2004. OpenStax CNX. Aug 24, 2004 Download for free at http://cnx.org/content/col10225/1.12
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Ece 320 spring 2004' conversation and receive update notifications?

Ask