<< Chapter < Page Chapter >> Page >

Draw a conclusion: Is a constant frequency offset a good way to transpose a melody?

Part 2

In music theory, an interval is a standard distance between two pitches. For example, if you play middle C, and then the G above that, you have played a perfect fifth . If you start with an F#, then a perfect fifth above that is a C#. The first note you play is called the fundamental .

Refer back to the piano keyboard diagram at the top of this page. Each step to an adjacent key is called a half step (also known as a semitone ).

If you play middle C (C4 on the diagram), how many half steps up do you need to go in order to play a perfect fifth interval? Enter answer on your worksheet:

If you begin on A4, which note is a perfect fifth above? Enter answer on your worksheet:

More intervals are listed below; the musical mnemonic may be helpful to hear the interval in your mind:

  • Minor 2nd - one half step above fundamental (shark theme from "Jaws" movie)
  • Major 2nd - two half steps above fundamental ("Do-Re-Mi," first two notes)
  • Major 3rd - four half steps ("Kumbaya", first two notes of phrase)
  • Perfect 4th - five half steps ("Here Comes the Bride")
  • Perfect 5th - seven half steps ("Twinkle, twinkle, little star", first two notes)
  • Major 6th - nine half steps ("My Bonnie Lies Over the Ocean," first two notes)
  • Major 7th - eleven half steps ("There's a Place for Us" from West Side Story, first two notes)
  • Octave - twelve half steps ("Somewhere Over the Rainbow," first two notes)

Listen to each of these intervals by entering the frequencies from the keyboard diagram. Remember to set your offset to zero. Also, you can silence a note by entering zero frequency. For example, if you want to hear a perfect 6th interval beginning at B3, you should use the frequencies 246.9 Hz and 415.3 Hz (G#4).

Part 3

Use C4 as the fundamental. Enter its frequency on your worksheet:

What is the frequency of a major 3rd above the fundamental? Enter its frequency on your worksheet:

What is the frequency ratio of the interval? Express your result in the form "a : 1", where "a" corresponds to the higher of the two frequencies. Enter the ratio on your worksheet:

Repeat the previous three questions using C5 as the fundamental (remember, C5 is one octave above C4). Enter the three values on your worksheet:

Try this again using A#2 as the fundamental; enter the three values on your worksheet:

Try this again using several different fundamental pitches for another type of interval.

Now, draw a conclusion: Based on what you have experienced about musical intervals so far, can you develop at least part of an explanation for why the frequencies have been selected as they have? Enter your comments on the worksheet:

Part 4

A variety of scales or tuning systems have been devised for musical instruments, some dating back several millennia. Scales include Pythagorean tuning , just-tempered , mean-tempered , well-tempered , (have you heard of Bach's "Well-Tempered Clavichord"?), and equal-tempered . For example, a just-tempered scale uses the following ratios of whole numbers for the intervals:

  • Major 2nd, 9:8 = 1.125:1
  • Major 3rd, 5:4 = _____ : 1
  • Perfect 4th, 4:3 = _____ : 1
  • Perfect 5th, 3:2 = _____ : 1
  • Major 6th, 5:3 = _____ : 1
  • Major 7th, 15:8 = _____ : 1
  • Octave, 2:1 = _____ : 1

Complete the table above to show each interval as a ratio of the form "a : 1"; enter these ratios on your worksheet:

Modify your VI so that you can enter a single fundamental frequency (in Hz) and an array of interval ratios to play. Be sure to keep the "Actual Frequencies" indicator so that you always know to what frequencies you are listening!

Listen to the scale formed by the following sequence of ratios, and use A4 (440 Hz) as the fundamental: 1, 9/8, 5/4, 4/3, 3/2, 5/3, 15/8, 2. Comment on how well this scale sounds to you (enter your comments on your worksheet):

Transpose the same scale to G4 as the fundamental, and then F4 as the fundamental. Comment on well this scale transposes to different keys (the differences may be rather subtle); enter your comments on the worksheet:

Part 5

The frequencies on the keyboard diagram above show the piano tuned using the equal-tempered scale. An equal-tempered scale sacrifices the pure whole number ratios scheme for intervals, but offers the advantage that a melody transposed to any other key will sound the same. Thus, an equal-tempered scale is a "global compromise" -- a given melody will be the same level of out of tune no matter which key is used for the fundamental. The other scales mentioned above will cause a given melody to sound quite nice in some keys, and quite out of tune in other keys.

Derive a mathematical function to calculate the frequencies used by the equal-tempered scale, i.e., given a fundamental frequency and a semitone offset, calculate the frequency. For example, when your formula is presented with the frequency 440 Hz and an offset of 2 (i.e., two semitones above concert A), it should return 493.9 Hz. Be sure to show your complete derivation process on your worksheet, and not simply the end result.

    Hints:

  • Your function should include a fundamental frequency "f" in Hz.
  • Your function should include a way to calculate the interval selected by the number of semitones (or half steps) above or below the fundamental frequency.
  • Your function should double the frequency when you enter 12 semitones above the fundamental (what should it do when you enter 12 semitones below the fundamental?).

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Musical signal processing with labview -- introduction to audio and musical signals. OpenStax CNX. Nov 07, 2007 Download for free at http://cnx.org/content/col10481/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Musical signal processing with labview -- introduction to audio and musical signals' conversation and receive update notifications?

Ask