<< Chapter < Page Chapter >> Page >
In this module, the following topics are presented: 1) an outline of the history of human energy use, 2) challenges to continued reliance on fossil energy, and 3) motivations and time scale for transitions in energy use.

Learning objectives

After reading this module, students should be able to

  • outline the history of human energy use
  • understand the challenges to continued reliance on fossil energy
  • understand the motivations and time scale for transitions in energy use

Introduction and history

Energy is a pervasive human need, as basic as food or shelter to human existence. World energy use has grown dramatically since the rise of civilization lured humans from their long hunter-gatherer existence to more energy intensive lifestyles in settlements. Energy use has progressed from providing only basic individual needs such as cooking and heating to satisfying our needs for permanent housing, farming and animal husbandry, transportation, and ultimately manufacturing, city-building, entertainment, information processing and communication. Our present lifestyle is enabled by readily available inexpensive fossil energy, concentrated by nature over tens or hundreds of millions of years into convenient, high energy density deposits of fossil fuels    that are easily recovered from mines or wells in the earth's crust.

Sustainability challenges

Eighty five percent of world energy is supplied by combustion of fossil fuels. The use of these fuels (coal since the middle ages for heating; and coal, oil and gas since the Industrial Revolution for mechanical energy) grew naturally from their high energy density, abundance and low cost. For approximately 200 years following the Industrial Revolution, these energy sources fueled enormous advances in quality of life and economic growth. Beginning in the mid-20th Century, however, fundamental challenges began to emerge suggesting that the happy state of fossil energy use could not last forever.

Environmental pollution

The first sustainability challenge to be addressed was environmental pollution, long noticed in industrial regions but often ignored. Developed countries passed legislation limiting the pollutants that could be emitted, and gradually over a period of more than two decades air and water quality improved until many of the most visible and harmful effects were no longer evident.

Limited energy resources

The second sustainability issue to be addressed has been limited energy resources. The earth and its fossil resources are finite, a simple fact with the obvious implication that we cannot continue using fossil fuels indefinitely. The question is not when the resources will run out, rather when they will become too expensive or technically challenging to extract. Resources are distributed throughout the earth's crust – some easily accessible, others buried in remote locations or under impenetrable barriers. There are oil and gas deposits in the Arctic, for example, that have not been explored or documented, because until recently they were buried under heavy covers of ice on land and sea. We recover the easy and inexpensive resources first, leaving the difficult ones for future development. The cost-benefit balance is usually framed in terms of peaking – when will production reach a peak and thereafter decline, failing to satisfy rising demand, and thus create shortages? Peaks in energy production are notoriously hard to predict because rising prices, in response to rising demand and the fear of shortages, provide increasing financial resources to develop more expensive and technically challenging production opportunities.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Sustainability: a comprehensive foundation. OpenStax CNX. Nov 11, 2013 Download for free at http://legacy.cnx.org/content/col11325/1.43
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Sustainability: a comprehensive foundation' conversation and receive update notifications?

Ask