<< Chapter < Page Chapter >> Page >

This figure, which can be thought of as either

  • the chance that both maternal and paternal alleles at one locus are identical by descent or
  • the proportion of all the individual's genes that are homozygous because of identity by common descent,

is known as the coefficient of inbreeding and is usually given the symbol F.

To see a compact and also clear description of using statiistics for pedigree genetic analysis, click MITOPENCOURSEWARE ( PDF ).

Lecture 33. population genetics

If genetics is a science studying structure, function and movement rules of genes, population genetics is the third part of it: a science studying movement rules of gene carriers – chromosomes and their effects and consequences. At least from the genetic point of view, population is a unit of evolution. In terms of breeding practice, populations are plant varieties and animal breeds.

D. S. Falconer (The quote is from Introduction to Quantitative Genetics by D. S. Falconer, 1960, Ronald Press.) wrote:

"A population in the genetic sense, is not just a group of individuals, but a breeding group; and the genetics of a population is concerned not only with the genetic constitution of the individuals but also with the transmission of the genes from one generation to the next. In the transmission the genotypes of the parents are broken down and a new set of genotypes is constituted in the progeny, from the genes transmitted in the gametes. The genes carried by the population thus have continuity from generation to generation, but the genotypes in which they appear do not. The genetic constitution of a population, referring to the genes it carries, is described by the array of gene frequencies, that is by specification of the alleles present at every locus and the numbers or proportions of the different alleles at each locus." (page 6).

In fact population genetics is studying the allele frequency distribution and change under the influence of the four evolutionary forces: natural selection , genetic drift , mutation and gene flow . It also takes account of population subdivision and population structure in space. As such, it attempts to explain such phenomena as adaptation and speciation . Population genetics was a vital ingredient in the modern evolutionary synthesis whose primary founders were Sewall Wright , J. B. S. Haldane and R. A. Fisher , they also laid the foundations for the related discipline of quantitative genetics .

For humans the applications of Mendelian genetics, chromosomal abnormalities, and multifactorial inheritance to medical practice are quite evident. Physicians work mostly with patients and families. However, as important as the work of physicians may be, genes also affect populations, and in the long run their effects in populations have a far more important impact on medicine than the relatively few families each physician may serve. It is important that certain polymorphisms are maintained so that the species may survive, even at the expense of individuals. Genetic polymorphisms often are detrimental to the homozygote, but they allow others of the species to survive. Before medical intervention was possible, populations that lacked the sickle cell anemia allele could not survive in the malaria regions of West Africa. Those that had the sickle cell anemia allele survived, and the gene remains in the population at high frequency today, even though the homozygous recessive phenotype was at a severe disadvantage in the past. The high rate of thalassemia in people of Mediterranean origin, the high rate of sickle cell anemia in people of West African descent, the high rate of cystic fibrosis in people from Western Europe, and the high rate of Tay-Sachs disease in ethnic groups from Eastern Europe may all owe their origin to environmental factors that cause changes in gene frequencies in large populations by giving some advantage to heterozygotes who carry a deleterious allele. Although one may never use the calculations of population genetics in medical practice, the underlying principles should be understood.

To have general understanding of population genetics, click ( PDF ) for studying Hardy-Weinberg Equilibrium; click ( PDF ) to see the role of Mutation and Selection in population structure, and click ( PDF ) for consideration of Inbreeding as a factor influencing the composition of populations.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Genetics. OpenStax CNX. Jul 29, 2009 Download for free at http://cnx.org/content/col10782/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Genetics' conversation and receive update notifications?

Ask