<< Chapter < Page Chapter >> Page >

The following sections will explain the three filters in detail.

  • B(ω) , the separation filter.
  • Bm+ , the normalization filter used to solve the scaling problem that arises after applying independent component analysis.
  • P(ω) , the permutation filter used to solve the frequency distortion problem that arises after applying independent component analysis.

Separation filter

The separation filter, shown in the previous section can be broken down into the following components.

Separation Filter

W(ω) is the preprocessing filter used to reduce reflections and ambient noise by using the subspace method. U(ω) is the filter obtained by applying independent component analysis after preprocessing.

I. subspace method

The spatial correlation, or autocorrelation, matrix at frequency ω is defined below.

Spatial Correlation

Given that there are M inputs and M sources, the resulting matrix will be M × M . This matrix can be rewritten in the following way.

Rewritten Correlation Matrix
The spatial correlation matrix.
Noise Cross Spectrum
The noise correlation matrix.
Q Matrix
The sources' cross-spectrum matrix.

In other words, K is the correlation matrix of n(t) and Q is the cross-spectrum matrix of the sources. However, since the source signals, s(t) , are unknown at this point, this equation cannot be directly solved. Instead, we can represent the generalized eigenvalue decomposition of the spatial correlation matrix in the following manner.

Generalized Decomposition

E refers is the eigenvector matrix, E = [e1,e2, …,eM] , and Λ = diag(λ1,λ2,…,λM) refers to the eigenvalues of R . Since K , the noise correlation matrix, cannot be directly observed apart from the source signals, we will assume that K = I , which will evenly distribute the reflections and ambient noise induced by the environment among the estimated sources. As such, the eigenvalue decomposition of R can be rewritten as the following.

Standard Decomposition

The final preprocessing filter uses the eigevector and eigenvalue matrices resulting from the standard eigenvalue decomposition of the spatial correlation matrix and is shown below.

Final Preprocessing Filter

Ii. independent component analysis

By applying the preprocessing filter obtained from the subspace method, our observed signals are now of the following form.

Applying the Subspace filter

To estimate the source signals from the preprocessed input signals, we can use independent component analysis to solve the linear system displayed below, for the filter U(ω) .

Applying the ICA Filter

Now that the separation filter at each frequency has been found, the problems that arise from the separation process must be addressed.

Scaling

The scaling problem that results from applying independent component analysis can be resolved using the filter shown below.

Scaling Filter

Bm,n+(ω) refers to the (m,n) th entry in B+(ω) , which is the pseudo-inverse of B(ω) (regular inverse also works here since we assume that the number of separated sources and the number of inputs are both M , so that the resulting separation matrix is square). Additionally, m refers to an arbitrary row or microphone in B+(ω) . By applying this matrix, each signal, i , is amplified by the component of signal i observed at microphone or input m . Essentially, this filter amplifies the frequency components of the separated source signals so that the waveforms of the resulting sources will be distinguishable and audible.

Permutation

A second critical problem that arises after applying independent component analysis is that the order in which the source signals are returned is unknown. Since independent component analysis is applied at each frequency, we must find the permutation of components that has the highest chance of being the correct permutation to reconstruct the source signals and minimize the amount of frequency distortion caused by independent component analysis.

We define the permutation matrix, P , as the following.

Pseudo Inverse of Separation Filter
Permutation Filter Applied to Pseudo Inverse of Separation Filter
Applied Pseudo Inverse Matrix

The matrix, P , exchanges the column vectors of Z(ω) to get different permutations. We define the cosine of θn between the two vectors zn(ω) and zn(ω0) , where ω0 is the reference frequency is as follows.

Angle Between Filter Vectors

The permutation is, then, determined by the following.

Permutation Filter Definition

The cost function, F(P) , used above, is defined as follows.

Cost Function for Permutation Filter

This compares the inverse vector filter at each frequency with a filter at a reference frequency, ω0 . However, if we use the same reference frequency to find the permutation at every other frequency, then the problem arises if the filter at the reference frequency has the incorrect permutation. In order to minimize this error, a new reference frequency is chosen after the permutations of filters at K frequencies are found. As such, the frequency range of a reference frequency, ω0 , is as follows.

Frequency Range

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Selective transparent headphone. OpenStax CNX. Dec 18, 2014 Download for free at http://legacy.cnx.org/content/col11733/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Selective transparent headphone' conversation and receive update notifications?

Ask