<< Chapter < Page Chapter >> Page >

Data set 4: global temperature

The mean global temperature from 1861 to 1996 is listed in [link] . The data, obtained from (External Link) , was converted to mean temperature in degrees Celsius.

Global temperature changes over the past 135 years. There has been a lot of discussion regarding changing weather patterns and a possible link to pollution and greenhouse gasses.
Year Temperature Year Temperature Year Temperature Year Temperature
1861 12.66 1901 12.871 1941 13.152 1981 13.228
1862 12.58 1902 12.726 1942 13.147 1982 13.145
1863 12.799 1903 12.647 1943 13.156 1983 13.332
1864 12.619 1904 12.601 1944 13.31 1984 13.107
1865 12.825 1905 12.719 1945 13.153 1985 13.09
1866 12.881 1906 12.79 1946 13.015 1986 13.183
1867 12.781 1907 12.594 1947 13.006 1987 13.323
1868 12.853 1908 12.575 1948 13.015 1988 13.34
1869 12.787 1909 12.596 1949 13.005 1989 13.269
1870 12.752 1910 12.635 1950 12.898 1990 13.437
1871 12.733 1911 12.611 1951 13.044 1991 13.385
1872 12.857 1912 12.678 1952 13.113 1992 13.237
1873 12.802 1913 12.671 1953 13.192 1993 13.28
1874 12.68 1914 12.85 1954 12.944 1994 13.355
1875 12.669 1915 12.962 1955 12.935 1995 13.483
1876 12.687 1916 12.727 1956 12.836 1996 13.314
1877 12.957 1917 12.584 1957 13.139
1878 13.092 1918 12.7 1958 13.208
1879 12.796 1919 12.792 1959 13.133
1880 12.811 1920 12.857 1960 13.094
1881 12.845 1921 12.902 1961 13.124
1882 12.864 1922 12.787 1962 13.129
1883 12.783 1923 12.821 1963 13.16
1884 12.73 1924 12.764 1964 12.868
1885 12.754 1925 12.868 1965 12.935
1886 12.826 1926 13.014 1966 13.035
1887 12.723 1927 12.904 1967 13.031
1888 12.783 1928 12.871 1968 13.004
1889 12.922 1929 12.718 1969 13.117
1890 12.703 1930 12.964 1970 13.064
1891 12.767 1931 13.041 1971 12.903
1892 12.671 1932 12.992 1972 13.031
1893 12.631 1933 12.857 1973 13.175
1894 12.709 1934 12.982 1974 12.912
1895 12.728 1935 12.943 1975 12.975
1896 12.93 1936 12.993 1976 12.869
1897 12.936 1937 13.092 1977 13.148
1898 12.759 1938 13.187 1978 13.057
1899 12.874 1939 13.111 1979 13.154
1900 12.959 1940 13.055 1980 13.195

Data set 5: price of petrol

The price of petrol in South Africa from August 1998 to July 2000 is shown in [link] .

Petrol prices
Date Price (R/l)
August 1998 R 2.37
September 1998 R 2.38
October 1998 R 2.35
November 1998 R 2.29
December 1998 R 2.31
January 1999 R 2.25
February 1999 R 2.22
March 1999 R 2.25
April 1999 R 2.31
May 1999 R 2.49
June 1999 R 2.61
July 1999 R 2.61
August 1999 R 2.62
September 1999 R 2.75
October 1999 R 2.81
November 1999 R 2.86
December 1999 R 2.85
January 2000 R 2.86
February 2000 R 2.81
March 2000 R 2.89
April 2000 R 3.03
May 2000 R 3.18
June 2000 R 3.22
July 2000 R 3.36

Grouping data

One of the first steps to processing a large set of raw data is to arrange the data values together into a smaller number of groups, and then count how many of each data value there are in each group. The groups are usually based on some sort of interval of data values, so data values that fall into a specific interval, would be grouped together. The grouped data is often presented graphically or in a frequency table. (Frequency means “how many times”)

Group the elements of Data Set 1 to determine how many times the coin landed heads-up and how many times the coin landed tails-up.

  1. There are two unique data values: H and T. Therefore there are two groups, one for the H-data values and one for the T-data values.

  2. Data Value Frequency
    H 44
    T 56
  3. There are 100 data values and the total of the frequency column is 44+56=100.

Exercises - grouping data

  1. The height of 30 learners are given below. Fill in the grouped data below. (Tally is a convenient way to count in 5's. We use llll to indicate 5.)
    142 163 169 132 139 140 152 168 139 150
    161 132 162 172 146 152 150 132 157 133
    141 170 156 155 169 138 142 160 164 168
    Group Tally Frequency
    130 h < 140
    140 h < 150
    150 h < 160
    160 h < 170
    170 h < 180
  2. An experiment was conducted in class and 50 learners were asked to guess the number of sweets in a jar. The following guesses were recorded.
    56 49 40 11 33 33 37 29 30 59
    21 16 38 44 38 52 22 24 30 34
    42 15 48 33 51 44 33 17 19 44
    47 23 27 47 13 25 53 57 28 23
    36 35 40 23 45 39 32 58 22 40
    Draw up a grouped frequency table using intervals 11-20, 21-30, 31-40, etc.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Siyavula textbooks: grade 10 maths [ncs]. OpenStax CNX. Aug 05, 2011 Download for free at http://cnx.org/content/col11239/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Siyavula textbooks: grade 10 maths [ncs]' conversation and receive update notifications?

Ask