The velocity of the object at
is therefore
. This corresponds with the values obtained in
[link] .
Summary of graphs
The relation between graphs of position, velocity and acceleration as functions of time is summarised in
[link] .
Often you will be required to describe the motion of an object that is presented as a graph of either position, velocity or acceleration as functions of time. The description of the motion represented by a graph should include the following (where possible):
whether the object is moving in the positive or negative direction
whether the object is at rest, moving at constant velocity or moving at constant positive acceleration (speeding up) or constant negative acceleration (slowing down)
You will also often be required to draw graphs based on a description of the motion in words or from a diagram. Remember that these are just different methods of presenting the same information. If you keep in mind the general shapes of the graphs for the different types of motion, there should not be any difficulty with explaining what is happening.
Experiment: position versus time using a ticker timer
Aim:
To measure the position and time during motion and to use that data to plot a “Position vs. Time" graph.
Work with a friend. Copy the table below into your workbook.
Attach a length of tape to the trolley.
Run the other end of the tape through the ticker timer.
Start the ticker timer going and roll the trolley down the ramp.
Repeat steps 1 - 3.
On each piece of tape, measure the distance between successive dots. Note these distances in the table below.
Use the frequency of the ticker timer to work out the time intervals between successive dots. Note these times in the table below,
Work out the average values for distance and time.
Use the average distance and average time values to plot a graph of “Distance vs. Time"
onto graph paper . Stick the graph paper into your workbook. (Remember that “A vs. B" always means “y vs. x").
Insert all axis labels and units onto your graph.
Draw the best straight line through your data points.
Results:
Distance (m)
Time (s)
1
2
Ave.
1
2
Ave.
Discussion:
Describe the motion of the trolley down the ramp.
Worked examples
The worked examples in this section demonstrate the types of questions that can be asked about graphs.
The position vs. time graph for the motion of a car is given below. Draw the corresponding velocity vs. time and acceleration vs. time graphs, and then describe the motion of the car.
The question gives a position vs. time graph and the following three things are required:
Draw a
vs.
graph.
Draw an
vs.
graph.
Describe the motion of the car.
To answer these questions, break the motion up into three sections: 0 – 2 seconds, 2 – 4 seconds and 4 – 6 seconds.
For the first 2 seconds we can see that the displacement remains constant - so the object is not moving, thus it has zero velocity during this time. We can reach this conclusion by another path too: remember that the gradient of a displacement vs. time graph is the velocity. For the first 2 seconds we can see that the displacement vs. time graph is a horizontal line, ie. it has a gradient of zero. Thus the velocity during this time is zero and the object is stationary.
For the next 2 seconds, displacement is increasing with time so the object is moving. Looking at the gradient of the displacement graph we can see that it is not constant. In fact, the slope is getting steeper (the gradient is increasing) as time goes on. Thus, remembering that the gradient of a displacement vs. time graph is the velocity, the velocity must be increasing with time during this phase.
For the final 2 seconds we see that displacement is still increasing with time, but this time the gradient is constant, so we know that the object is now travelling at a constant velocity, thus the velocity vs. time graph will be a horizontal line during this stage. We can now draw the graphs:
So our velocity vs. time graph looks like this one below. Because we haven't been given any values on the vertical axis of the displacement vs. time graph, we cannot figure out what the exact gradients are and therefore what the values of the velocities are. In this type of question it is just important to show whether velocities are positive or negative, increasing, decreasing or constant.
Once we have the velocity vs. time graph its much easier to get the acceleration vs. time graph as we know that the gradient of a velocity vs. time graph is the just the acceleration.
For the first 2 seconds the velocity vs. time graph is horisontal and has a value of zero, thus it has a gradient of zero and there is no acceleration during this time. (This makes sense because we know from the displacement time graph that the object is stationary during this time, so it can't be accelerating).
For the next 2 seconds the velocity vs. time graph has a positive gradient. This gradient is not changing (i.e. its constant) throughout these 2 seconds so there must be a constant positive acceleration.
For the final 2 seconds the object is traveling with a constant velocity. During this time the gradient of the velocity vs. time graph is once again zero, and thus the object is not accelerating.
The acceleration vs. time graph looks like this:
A brief description of the motion of the object could read something like this: At
s and object is stationary at some position and remains stationary until
s when it begins accelerating. It accelerates in a positive direction for 2 seconds until
s and then travels at a constant velocity for a further 2 seconds.
The velocity vs. time graph of a truck is plotted below. Calculate the distance and displacement of the truck after 15 seconds.
We are asked to calculate the distance and displacement of the car. All we need to remember here is that we can use the area between the velocity vs. time graph and the time axis to determine the distance and displacement.
For 0 – 5 seconds: The displacement is equal to the area of the triangle on the left:
For 5 – 12 seconds: The displacement is equal to the area of the rectangle:
For 12 – 14 seconds the displacement is equal to the area of the triangle above the time axis on the right:
For 14 – 15 seconds the displacement is equal to the area of the triangle below the time axis:
Now the total distance of the car is the sum of all of these areas:
Now the total displacement of the car is just the sum of all of these areas. HOWEVER, because in the last second (from
s to
s) the velocity of the car is negative, it means that the car was going in the opposite direction, i.e. back where it came from! So, to find the total displacement, we have to add the first 3 areas (those with positive displacements) and subtract the last one (because it is a displacement in the opposite direction).
The position vs. time graph below describes the motion of an athlete.
What is the velocity of the athlete during the first 4 seconds?
What is the velocity of the athlete from
s to
s?
The velocity is given by the gradient of a position vs. time graph. During the first 4 seconds, this is
For the last 3 seconds we can see that the displacement stays constant. The graph shows a horisontal line and therefore the gradient is zero. Thus
.
The acceleration vs. time graph for a car starting from rest, is given below. Calculate the velocity of the car and hence draw the velocity vs. time graph.
The motion of the car can be divided into three time sections: 0 – 2 seconds; 2 – 4 seconds and 4 – 6 seconds. To be able to draw the velocity vs. time graph, the velocity for each time section needs to be calculated. The velocity is equal to the area of the square under the graph:
For 0 – 2 seconds:
The velocity of the car is 4 m
s
at t = 2s.For 2 – 4 seconds:
The velocity of the car is 0 m
s
from
s to
s.For 4 – 6 seconds:
The acceleration had a negative value, which means that the velocity is decreasing. It starts at a velocity of 4 m
s
and decreases to 0 m
s
.
The velocity vs. time graph looks like this:
Graphs
A car is parked
from home for 10 minutes. Draw a displacement-time, velocity-time and acceleration-time graphs for the motion. Label all the axes.
A bus travels at a constant velocity of
for 6 seconds. Draw the displacement-time, velocity-time and acceleration-time graph for the motion. Label all the axes.
An athlete runs with a constant acceleration of
for
. Draw the acceleration-time, velocity-time and displacement time graphs for the motion. Accurate values are only needed for the acceleration-time and velocity-time graphs.
The following velocity-time graph describes the motion of a car. Draw the displacement-time graph and the acceleration-time graph and explain the motion of the car according to the three graphs.
The following velocity-time graph describes the motion of a truck. Draw the displacement-time graph and the acceleration-time graph and explain the motion of the truck according to the three graphs.
This simulation allows you the opportunity to plot graphs of motion and to see how the graphs of motion change when you move the man.
run demo
Questions & Answers
I'm interested in biological psychology and cognitive psychology
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills