<< Chapter < Page Chapter >> Page >

More products

Khan academy video on products of polynomials.

We have seen how to multiply two binomials in "Product of Two Binomials" . In this section, we learn how to multiply a binomial (expression with two terms) by a trinomial (expression withthree terms). Fortunately, we use the same methods we used to multiply two binomials to multiply a binomial and a trinomial.

For example, multiply 2 x + 1 by x 2 + 2 x + 1 .

( 2 x + 1 ) ( x 2 + 2 x + 1 ) = 2 x ( x 2 + 2 x + 1 ) + 1 ( x 2 + 2 x + 1 ) ( apply distributive law ) = [ 2 x ( x 2 ) + 2 x ( 2 x ) + 2 x ( 1 ) ] + [ 1 ( x 2 ) + 1 ( 2 x ) + 1 ( 1 ) ] = 2 x 3 + 4 x 2 + 2 x + x 2 + 2 x + 1 ( expand the brackets ) = 2 x 3 + ( 4 x 2 + x 2 ) + ( 2 x + 2 x ) + 1 ( group like terms to simplify ) = 2 x 3 + 5 x 2 + 4 x + 1 ( simplify to get final answer )
Multiplication of Binomial with Trinomial

If the binomial is A + B and the trinomial is C + D + E , then the very first step is to apply the distributive law:

( A + B ) ( C + D + E ) = A ( C + D + E ) + B ( C + D + E )

If you remember this, you will never go wrong!

Multiply x - 1 with x 2 - 2 x + 1 .

  1. We are given two expressions: a binomial, x - 1 , and a trinomial, x 2 - 2 x + 1 . We need to multiply them together.

  2. Apply the distributive law and then simplify the resulting expression.

  3. ( x - 1 ) ( x 2 - 2 x + 1 ) = x ( x 2 - 2 x + 1 ) - 1 ( x 2 - 2 x + 1 ) ( apply distributive law ) = [ x ( x 2 ) + x ( - 2 x ) + x ( 1 ) ] + [ - 1 ( x 2 ) - 1 ( - 2 x ) - 1 ( 1 ) ] = x 3 - 2 x 2 + x - x 2 + 2 x - 1 ( expand the brackets ) = x 3 + ( - 2 x 2 - x 2 ) + ( x + 2 x ) - 1 ( group like terms to simplify ) = x 3 - 3 x 2 + 3 x - 1 ( simplify to get final answer )
  4. The product of x - 1 and x 2 - 2 x + 1 is x 3 - 3 x 2 + 3 x - 1 .

Find the product of x + y and x 2 - x y + y 2 .

  1. We are given two expressions: a binomial, x + y , and a trinomial, x 2 - x y + y 2 . We need to multiply them together.

  2. Apply the distributive law and then simplify the resulting expression.

  3. ( x + y ) ( x 2 - x y + y 2 ) = x ( x 2 - x y + y 2 ) + y ( x 2 - x y + y 2 ) ( apply distributive law ) = [ x ( x 2 ) + x ( - x y ) + x ( y 2 ) ] + [ y ( x 2 ) + y ( - x y ) + y ( y 2 ) ] = x 3 - x 2 y + x y 2 + y x 2 - x y 2 + y 3 ( expand the brackets ) = x 3 + ( - x 2 y + y x 2 ) + ( x y 2 - x y 2 ) + y 3 ( group like terms to simplify ) = x 3 + y 3 ( simplify to get final answer )
  4. The product of x + y and x 2 - x y + y 2 is x 3 + y 3 .

We have seen that:
( x + y ) ( x 2 - x y + y 2 ) = x 3 + y 3

This is known as a sum of cubes .

Investigation : difference of cubes

Show that the difference of cubes ( x 3 - y 3 ) is given by the product of x - y and x 2 + x y + y 2 .

Products

  1. Find the products of:
    (a) ( - 2 y 2 - 4 y + 11 ) ( 5 y - 12 ) (b) ( - 11 y + 3 ) ( - 10 y 2 - 7 y - 9 )
    (c) ( 4 y 2 + 12 y + 10 ) ( - 9 y 2 + 8 y + 2 ) (d) ( 7 y 2 - 6 y - 8 ) ( - 2 y + 2 )
    (e) ( 10 y 5 + 3 ) ( - 2 y 2 - 11 y + 2 ) (f) ( - 12 y - 3 ) ( 12 y 2 - 11 y + 3 )
    (g) ( - 10 ) ( 2 y 2 + 8 y + 3 ) (h) ( 2 y 6 + 3 y 5 ) ( - 5 y - 12 )
    (i) ( 6 y 7 - 8 y 2 + 7 ) ( - 4 y - 3 ) ( - 6 y 2 - 7 y - 11 ) (j) ( - 9 y 2 + 11 y + 2 ) ( 8 y 2 + 6 y - 7 )
    (k) ( 8 y 5 + 3 y 4 + 2 y 3 ) ( 5 y + 10 ) ( 12 y 2 + 6 y + 6 ) (l) ( - 7 y + 11 ) ( - 12 y + 3 )
    (m) ( 4 y 3 + 5 y 2 - 12 y ) ( - 12 y - 2 ) ( 7 y 2 - 9 y + 12 ) (n) ( 7 y + 3 ) ( 7 y 2 + 3 y + 10 )
    (o) ( 9 ) ( 8 y 2 - 2 y + 3 ) (p) ( - 12 y + 12 ) ( 4 y 2 - 11 y + 11 )
    (q) ( - 6 y 4 + 11 y 2 + 3 y ) ( 10 y + 4 ) ( 4 y - 4 ) (r) ( - 3 y 6 - 6 y 3 ) ( 11 y - 6 ) ( 10 y - 10 )
    (s) ( - 11 y 5 + 11 y 4 + 11 ) ( 9 y 3 - 7 y 2 - 4 y + 6 ) (t) ( - 3 y + 8 ) ( - 4 y 3 + 8 y 2 - 2 y + 12 )


Factorising a quadratic

Khan academy video on factorising a quadratic.

Factorisation can be seen as the reverse of calculating the product of factors. In order to factorise a quadratic, we need to find the factors which when multiplied together equal the original quadratic.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Siyavula textbooks: grade 10 maths [ncs]. OpenStax CNX. Aug 05, 2011 Download for free at http://cnx.org/content/col11239/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Siyavula textbooks: grade 10 maths [ncs]' conversation and receive update notifications?

Ask