<< Chapter < Page Chapter >> Page >

However, it is very important to realize that these two structures are identical in the Lewis model, because both show that the oxygen atom has a complete octet of valence electrons,forms two single bonds with hydrogen atoms, and has two pairs of unshared electrons in its valence shell. In the same way, the twostructures for Freon 114 shown here are also identical .

These two drawings do not represent different structures or arrangements of the atoms in the bonds.

Finally, we must keep in mind that we have drawn Lewis structures strictly as a convenient tool for ourunderstanding of chemical bonding and molecular stability. It is based on commonly observed trends in valence, bonding, and bondstrengths. These structures must not be mistaken as observations themselves, however. As we encounter additional experimentalobservations, we must be prepared to adapt our Lewis structure model to fit these observations, but we must never adapt ourobservations to fit the Lewis model.

Extensions of the lewis structure model

With these thoughts in mind, we turn to a set of molecules which challenge the limits of the Lewis model indescribing molecular structures. First, we note that there are a variety of molecules for which atoms clearly must bond in such away as to have more than eight valence electrons. A conspicuous example is S F 6 , where the sulfur atom is bonded to six F atoms. As such, the S atommust have 12 valence shell electrons to form 6 covalent bonds. Similarly, the phosphorous atom in P Cl 5 has 10 valence electrons in 5 covalent bonds, the Cl atom in Cl F 3 has 10 valence electrons in 3 covalent bonds and two lone pairs. We also observe the interesting compounds of the noble gas atoms, e.g. Xe O 3 , where noble gas atom begins with eight valence electrons evenbefore forming any bonds. In each of these cases, we note that the valence of the atoms S, P, Cl, and Xe are normally 2, 3, 1, and 0,yet more bonds than this are formed. In such cases, it is not possible to draw Lewis structures in which S, P, Cl, and Xe obeythe octet rule. We refer to these molecules as "expanded valence" molecules, meaning that the valence of the centralatom has expanded beyond the expected octet.

There are also a variety of molecules for which there are too few electrons to provide an octet for every atom. Most notably, Boron and Aluminum, from Group III, displaybonding behavior somewhat different than we have seen and thus less predictable from the model we have developed so far. These atomshave three valence shell electrons, so we might predict a valence of 5 on the basis of the octet rule. However, compounds in whichboron or aluminum atoms form five bonds are never observed, so we must conclude that simple predictions based on the octet rule arenot reliable for Group III.

Consider first boron trifluoride, B F 3 . The bonding here is relatively simple to model with a Lewis structure if we allow each valenceshell electron in the boron atom to be shared in a covalent bond with each fluorine atom.

Note that, in this structure, the boron atom has only six valence shell electrons, but the octet rule is obeyedby the fluorine atoms.

We might conclude from this one example that boron atoms obey a sextet rule. However, boron will form a stableion with hydrogen, B H 4 - , in which the boron atom does have a complete octet. In addition, B F 3 will react with ammonia N H 3 for form a stable compound, N H 3 B F 3 , for which a Lewis structure can be drawn in which boron has acomplete octet, shown here .

Compounds of aluminum follow similar trends. Aluminum trichloride, Al Cl 3 , aluminum hydride, Al H 3 , and aluminum hydroxide, Al ( O H ) 3 , all indicate a valence of 3 for aluminum, with six valenceelectrons in the bonded molecule. However, the stability of aluminum hydride ions, Al H 4 - , indicates that Al can also support an octet of valence shellelectrons as well.

We conclude that, although the octet rule can still be of some utility in understanding the chemistry of Boronand Aluminum, the compounds of these elements are less predictable from the octet rule. This should not be disconcerting, however. Theoctet rule was developed in on the basis of the observation that, for elements in Groups IV through VIII, the number of valenceelectrons plus the most common valence is equal to eight. Elements in Groups I, II, and III do not follow this observation mostcommonly.

Resonance structures

Another interesting challenge for the Lewis model we have developed is the set of molecules for which it ispossible to draw more than one structure in agreement with the octet rule. A notable example is the nitric acid molecule, H N O 3 , where all three oxygens are bonded to the nitrogen. Two structurescan be drawn for nitric acid with nitrogen and all three oxygens obeying the octet rule.

In each structure, of the oxygens not bonded to hydrogen, one shares a single bond with nitrogen while the othershares a double bond with nitrogen. These two structures are not identical, unlike the two freon structures in , because the atoms are bonded differently in the two structures.

Review and discussion questions

Compounds with formulae of the form C n H 2 n + 2 are often referred to as "saturated" hydrocarbons. Using Lewis structures, explain how and in what sense thesemolecules are "saturated."

Got questions? Get instant answers now!

Molecules with formulae of the form C n H 2 n + 1 ( e.g. C H 3 , C 2 H 5 ) are called "radicals" and are extremely reactive. UsingLewis structures, explain the reactivity of these molecules.

Got questions? Get instant answers now!

State and explain the experimental evidence and reasoning which shows that multiple bonds are stronger andshorter than single bonds.

Got questions? Get instant answers now!

Compare N 2 to H 4 N 2 . Predict which bond is stronger and explain why.

Got questions? Get instant answers now!

Explain why the two Lewis structures for Freon 114, shown in Figure 21 , are identical. Draw a Lewis structures for an isomer of Freon 114, that is,another molecule with the same molecular formula as Freon 114 but a different structural formula.

Got questions? Get instant answers now!

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, General chemistry i. OpenStax CNX. Jul 18, 2007 Download for free at http://cnx.org/content/col10263/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'General chemistry i' conversation and receive update notifications?

Ask