<< Chapter < Page Chapter >> Page >

Another example of energy conversion occurs in a solar cell. Sunlight impinging on a solar cell (see [link] ) produces electricity, which in turn can be used to run an electric motor. Energy is converted from the primary source of solar energy into electrical energy and then into mechanical energy.

A solar-powered aircraft flying over the sea. Solar cells are on the upper surface of the wings, where they are exposed to sunlight.
Solar energy is converted into electrical energy by solar cells, which is used to run a motor in this solar-power aircraft. (credit: NASA)
Energy of various objects and phenomena
Object/phenomenon Energy in joules
Big Bang 10 68 size 12{"10" rSup { size 8{"68"} } } {}
Energy released in a supernova 10 44 size 12{"10" rSup { size 8{"44"} } } {}
Fusion of all the hydrogen in Earth’s oceans 10 34 size 12{"10" rSup { size 8{"34"} } } {}
Annual world energy use 4 × 10 20 size 12{4 times "10" rSup { size 8{"20"} } } {}
Large fusion bomb (9 megaton) 3 . 8 × 10 16 size 12{3 "." 8 times "10" rSup { size 8{"16"} } } {}
1 kg hydrogen (fusion to helium) 6 . 4 × 10 14 size 12{6 "." 4 times "10" rSup { size 8{"14"} } } {}
1 kg uranium (nuclear fission) 8 . 0 × 10 13 size 12{8 "." 0 times "10" rSup { size 8{"13"} } } {}
Hiroshima-size fission bomb (10 kiloton) 4 . 2 × 10 13 size 12{4 "." 2 times "10" rSup { size 8{"13"} } } {}
90,000-ton aircraft carrier at 30 knots 1 . 1 × 10 10 size 12{1 "." 1 times "10" rSup { size 8{"10"} } } {}
1 barrel crude oil 5 . 9 × 10 9 size 12{5 "." 9 times "10" rSup { size 8{9} } } {}
1 ton TNT 4 . 2 × 10 9 size 12{4 "." 2 times "10" rSup { size 8{9} } } {}
1 gallon of gasoline 1 . 2 × 10 8 size 12{1 "." 2 times "10" rSup { size 8{8} } } {}
Daily home electricity use (developed countries) 7 × 10 7 size 12{7 times "10" rSup { size 8{7} } } {}
Daily adult food intake (recommended) 1 . 2 × 10 7 size 12{1 "." 2 times "10" rSup { size 8{7} } } {}
1000-kg car at 90 km/h 3 . 1 × 10 5 size 12{3 "." 1 times "10" rSup { size 8{5} } } {}
1 g fat (9.3 kcal) 3 . 9 × 10 4 size 12{3 "." 9 times "10" rSup { size 8{4} } } {}
ATP hydrolysis reaction 3 . 2 × 10 4 size 12{3 "." 2 times "10" rSup { size 8{4} } } {}
1 g carbohydrate (4.1 kcal) 1 . 7 × 10 4 size 12{1 "." 7 times "10" rSup { size 8{4} } } {}
1 g protein (4.1 kcal) 1 . 7 × 10 4 size 12{1 "." 7 times "10" rSup { size 8{4} } } {}
Tennis ball at 100 km/h 22
Mosquito ( 10 –2 g at 0.5 m/s ) 1 . 3 × 10 6 size 12{1 "." 3 times "10" rSup { size 8{-6} } } {}
Single electron in a TV tube beam 4 . 0 × 10 15 size 12{4 "." 0 times "10" rSup { size 8{-"15"} } } {}
Energy to break one DNA strand 10 19 size 12{"10" rSup { size 8{-"19"} } } {}

Efficiency

Even though energy is conserved in an energy conversion process, the output of useful energy or work will be less than the energy input. The efficiency     Eff size 12{ ital "Eff"} {} of an energy conversion process is defined as

Efficiency ( Eff ) = useful energy or work output total energy input = W out E in . size 12{"Efficiency " \( ital "Eff" \) = { {"useful energy or work output"} over {"total energy input"} } = { {W rSub { size 8{"out"} } } over {E rSub { size 8{"in"} } } } "." } {}

[link] lists some efficiencies of mechanical devices and human activities. In a coal-fired power plant, for example, about 40% of the chemical energy in the coal becomes useful electrical energy. The other 60% transforms into other (perhaps less useful) energy forms, such as thermal energy, which is then released to the environment through combustion gases and cooling towers.

Efficiency of the human body and mechanical devices
Activity/device Efficiency (%) Representative values
Cycling and climbing 20
Swimming, surface 2
Swimming, submerged 4
Shoveling 3
Weightlifting 9
Steam engine 17
Gasoline engine 30
Diesel engine 35
Nuclear power plant 35
Coal power plant 42
Electric motor 98
Compact fluorescent light 20
Gas heater (residential) 90
Solar cell 10

Section summary

  • The law of conservation of energy states that the total energy is constant in any process. Energy may change in form or be transferred from one system to another, but the total remains the same.
  • When all forms of energy are considered, conservation of energy is written in equation form as KE i + PE i + W nc + OE i = KE f + PE f + OE f size 12{"KE" rSub { size 8{i} } +"PE" rSub { size 8{i} } +W rSub { size 8{"nc"} } +"OE" rSub { size 8{i} } ="KE" rSub { size 8{f} } +"PE" rSub { size 8{f} } +"OE" rSub { size 8{f} } } {} , where OE size 12{"OE"} {} is all other forms of energy besides mechanical energy.
  • Commonly encountered forms of energy include electric energy, chemical energy, radiant energy, nuclear energy, and thermal energy.
  • Energy is often utilized to do work, but it is not possible to convert all the energy of a system to work.
  • The efficiency Eff size 12{ ital "Eff"} {} of a machine or human is defined to be Eff = W out E in size 12{ ital "Eff"= { {W rSub { size 8{"out"} } } over {E rSub { size 8{"in"} } } } } {} , where W out size 12{W rSub { size 8{"out"} } } {} is useful work output and E in size 12{E rSub { size 8{"in"} } } {} is the energy consumed.

Conceptual questions

Consider the following scenario. A car for which friction is not negligible accelerates from rest down a hill, running out of gasoline after a short distance. The driver lets the car coast farther down the hill, then up and over a small crest. He then coasts down that hill into a gas station, where he brakes to a stop and fills the tank with gasoline. Identify the forms of energy the car has, and how they are changed and transferred in this series of events. (See [link] .)

A car coasting downhill, moving over a crest then again moving downhill and finally stopping at a gas station. Each of these positions is labeled with an arrow pointing downward.
A car experiencing non-negligible friction coasts down a hill, over a small crest, then downhill again, and comes to a stop at a gas station.

Do devices with efficiencies of less than one violate the law of conservation of energy? Explain.

List the energy conversions that occur when riding a bicycle.

Problems&Exercises

Using energy considerations and assuming negligible air resistance, show that a rock thrown from a bridge 20.0 m above water with an initial speed of 15.0 m/s strikes the water with a speed of 24.8 m/s independent of the direction thrown.

Equating ΔPE g size 12{Δ"PE" rSub { size 8{g} } } {} and ΔKE size 12{Δ"KE"} {} , we obtain v = 2 gh + v 0 2 = 2 ( 9.80 m /s 2 ) ( 20.0 m ) + ( 15.0 m/s ) 2 = 24.8 m/s size 12{v= sqrt {2 ital "gh"+v rSub { size 8{0} rSup { size 8{2} } } } = sqrt {2 \( 9 "." "80"" m/s" rSup { size 8{2} } \) \( "20" "." 0" m" \) + \( "15" "." "0 m/s" \) rSup { size 8{2} } } ="24" "." 8" m/s"} {}

Practice Key Terms 7

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Unit 5 - work and energy. OpenStax CNX. Jan 02, 2016 Download for free at https://legacy.cnx.org/content/col11946/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Unit 5 - work and energy' conversation and receive update notifications?

Ask