<< Chapter < Page | Chapter >> Page > |
A more valuable probability density function with many applications is the binomial distribution. This distribution will compute probabilities for any binomial process. A binomial process, often called a Bernoulli process after the first person to fully develop its properties, is any case where there are only two possible outcomes in any one trial, called successes and failures. It gets its name from the binary number system where all numbers are reduced to either 1's or 0's, which is the basis for computer technology and CD music recordings.
where b(x) is the probability of X successes in n trials when the probability of a success in ANY ONE TRIAL is p. And of course q=(1-p) and is the probability of a failure in any one trial.
We can see now why the combinatorial formula is also called the binomial coefficient because it reappears here again in the binomial probability function. For the binomial formula to work, the probability of a success in any one trial must be the same from trial to trial, or in other words, the outcomes of each trial must be independent. Flipping a coin is a binomial process because the probability of getting a head in one flip does not depend upon what has happened in PREVIOUS flips. (At this time it should be noted that using p for the parameter of the binomial distribution is a violation of the rule that population parameters are designated with Greek letters. In many textbooks θ (pronounced theta) is used instead of p and this is how it should be.
Just like a set of data, a probability density function has a mean and a standard deviation. For the binomial distribution these are given by the formulas:
Notice that p is the only parameter in these equations. The binomial distribution is thus seen as coming from the one-parameter family of probability distributions. In short, we know all there is to know about the binomial once we know p, the probability of a success in any one trial.
In probability theory, under certain circumstances, one probability distribution can be used to approximate another. We say that one is the limiting distribution of the other. If a small number is to be drawn from a large population, even if there is no replacement, we can still use the binomial even thought this is not a binomial process. If there is no replacement it violates the independence rule of the binomial. Nevertheless, we can use the binomial to approximate a probability that is really a hypergeometric distribution if we are drawing fewer than 10 percent of the population, i.e. X is less than 10 percent of N in the formula for the hypergeometric function. The rationale for this argument is that when drawing a small percentage of the population we do not alter the probability of a success from draw to draw in any meaningful way. Imagine drawing from not one deck of 52 cards but from 6 decks of cards. The probability of say drawing an ace does not change the conditional probability of what happens on a second draw in the same way it would if there were only 4 aces rather than the 24 aces now to draw from. This ability to use one probability distribution to estimate others will become very valuable to us later.
Notification Switch
Would you like to follow the 'Introductory statistics' conversation and receive update notifications?