<< Chapter < Page Chapter >> Page >

Modeling—in this first sense of a demonstration—connects instructional goals to students’ experiences by presenting real, vivid examples of behaviors or skills in a way that a student can practice directly, rather than merely talk about. There is often little need, when imitating a model, to translate ideas or instructions from verbal form into action. For students struggling with language and literacy, in particular, this feature can be a real advantage.

Modeling—as simplified representation

In a second meaning of modeling, a model is a simplified representation of a phenomenon that incorporates the important properties of the phenomenon. Models in this sense may sometimes be quite tangible, direct copies of reality; when I was in fourth grade growing up in California, for example, we made scale models of the Spanish missions as part of our social studies lessons about California history. But models can also be imaginary, though still based on familiar elements. In a science curriculum, for example, the behavior of gas molecules under pressure can be modeled by imagining the molecules as ping pong balls flying about and colliding in an empty room. Reducing the space available to the gas by making the room smaller, causes the ping pong balls to collide more frequently and vigorously, and thereby increases the pressure on the walls of the room. Increasing the space has the opposite effect. Creating an actual room full of ping pong balls may be impractical, of course, but the model can still be imagined.

Modeling in this second sense is not about altering students’ behavior, but about increasing their understanding of a newly learned idea, theory, or phenomenon. The model itself uses objects or events that are already familiar to students—simple balls and their behavior when colliding—and in this way supports students’ learning of new, unfamiliar material. Not every new concept or idea lends itself to such modeling, but many do: students can create models of unfamiliar animals, for example, or of medieval castles, or of ecological systems. Two-dimensional models—essentially drawings—can also be helpful: students can illustrate literature or historical events, or make maps of their own neighborhoods. The choice of model depends largely on the specific curriculum goals which the teacher needs to accomplish at a particular time.

Activating prior knowledge

Another way to connect curriculum goals to students’ experience is by activating prior knowledge , a term that refers to encouraging students to recall what they know already about new material being learned. Various formats for activating prior knowledge are possible. When introducing a unit about how biologists classify animal and plant species, for example, a teacher can invite students to discuss how they already classify different kinds of plants and animals. Having highlighted this informal knowledge, the teacher can then explore how the same species are classified by biological scientists, and compare the scientists’ classification schemes to the students’ own schemes. The activation does not have to happen orally, as in this example; a teacher can also ask students to write down as many distinct types of animals and plants that they can think of, and then ask students to diagram or map their relationships—essentially creating a concept map like the ones we described in Chapter 8 (Gurlitt, et al., 2006). Whatever the strategy used, activation helps by making students’ prior knowledge or experience conscious and therefore easier to link to new concepts or information.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Educational psychology. OpenStax CNX. May 11, 2011 Download for free at http://cnx.org/content/col11302/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Educational psychology' conversation and receive update notifications?

Ask