<< Chapter < Page Chapter >> Page >
  • Integrate functions resulting in inverse trigonometric functions

In this section we focus on integrals that result in inverse trigonometric functions. We have worked with these functions before. Recall from Functions and Graphs that trigonometric functions are not one-to-one unless the domains are restricted. When working with inverses of trigonometric functions, we always need to be careful to take these restrictions into account. Also in Derivatives , we developed formulas for derivatives of inverse trigonometric functions. The formulas developed there give rise directly to integration formulas involving inverse trigonometric functions.

Integrals that result in inverse sine functions

Let us begin this last section of the chapter with the three formulas. Along with these formulas, we use substitution to evaluate the integrals. We prove the formula for the inverse sine integral.

Rule: integration formulas resulting in inverse trigonometric functions

The following integration formulas yield inverse trigonometric functions:


  1. d u a 2 u 2 = sin −1 u a + C

  2. d u a 2 + u 2 = 1 a tan −1 u a + C

  3. d u u u 2 a 2 = 1 a sec −1 u a + C

Proof

Let y = sin −1 x a . Then a sin y = x . Now let’s use implicit differentiation. We obtain

d d x ( a sin y ) = d d x ( x ) a cos y d y d x = 1 d y d x = 1 a cos y .

For π 2 y π 2 , cos y 0 . Thus, applying the Pythagorean identity sin 2 y + cos 2 y = 1 , we have cos y = 1 = sin 2 y . This gives

1 a cos y = 1 a 1 sin 2 y = 1 a 2 a 2 sin 2 y = 1 a 2 x 2 .

Then for a x a , we have

1 a 2 u 2 d u = sin −1 ( u a ) + C .

Evaluating a definite integral using inverse trigonometric functions

Evaluate the definite integral 0 1 d x 1 x 2 .

We can go directly to the formula for the antiderivative in the rule on integration formulas resulting in inverse trigonometric functions, and then evaluate the definite integral. We have

0 1 d x 1 x 2 = sin −1 x | 0 1 = sin −1 1 sin −1 0 = π 2 0 = π 2 .
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Find the antiderivative of d x 1 16 x 2 .

1 4 sin −1 ( 4 x ) + C

Got questions? Get instant answers now!

Finding an antiderivative involving an inverse trigonometric function

Evaluate the integral d x 4 9 x 2 .

Substitute u = 3 x . Then d u = 3 d x and we have

d x 4 9 x 2 = 1 3 d u 4 u 2 .

Applying the formula with a = 2 , we obtain

d x 4 9 x 2 = 1 3 d u 4 u 2 = 1 3 sin −1 ( u 2 ) + C = 1 3 sin −1 ( 3 x 2 ) + C .
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Find the indefinite integral using an inverse trigonometric function and substitution for d x 9 x 2 .

sin −1 ( x 3 ) + C

Got questions? Get instant answers now!

Evaluating a definite integral

Evaluate the definite integral 0 3 / 2 d u 1 u 2 .

The format of the problem matches the inverse sine formula. Thus,

0 3 / 2 d u 1 u 2 = sin −1 u | 0 3 / 2 = [ sin −1 ( 3 2 ) ] [ sin −1 ( 0 ) ] = π 3 .
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Integrals resulting in other inverse trigonometric functions

There are six inverse trigonometric functions. However, only three integration formulas are noted in the rule on integration formulas resulting in inverse trigonometric functions because the remaining three are negative versions of the ones we use. The only difference is whether the integrand is positive or negative. Rather than memorizing three more formulas, if the integrand is negative, simply factor out −1 and evaluate the integral using one of the formulas already provided. To close this section, we examine one more formula: the integral resulting in the inverse tangent function.

Finding an antiderivative involving the inverse tangent function

Find an antiderivative of 1 1 + 4 x 2 d x .

Comparing this problem with the formulas stated in the rule on integration formulas resulting in inverse trigonometric functions, the integrand looks similar to the formula for tan −1 u + C . So we use substitution, letting u = 2 x , then d u = 2 d x and 1 / 2 d u = d x . Then, we have

1 2 1 1 + u 2 d u = 1 2 tan −1 u + C = 1 2 tan −1 ( 2 x ) + C .
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Questions & Answers

what is microbiology
Agebe Reply
What is a cell
Odelana Reply
what is cell
Mohammed
how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Calculus volume 1. OpenStax CNX. Feb 05, 2016 Download for free at http://cnx.org/content/col11964/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Calculus volume 1' conversation and receive update notifications?

Ask