<< Chapter < Page Chapter >> Page >

Write in sigma notation and evaluate the sum of terms 2 i for i = 3 , 4 , 5 , 6 .

i = 3 6 2 i = 2 3 + 2 4 + 2 5 + 2 6 = 120

Got questions? Get instant answers now!

The properties associated with the summation process are given in the following rule.

Rule: properties of sigma notation

Let a 1 , a 2 ,…, a n and b 1 , b 2 ,…, b n represent two sequences of terms and let c be a constant. The following properties hold for all positive integers n and for integers m , with 1 m n .


  1. i = 1 n c = n c

  2. i = 1 n c a i = c i = 1 n a i

  3. i = 1 n ( a i + b i ) = i = 1 n a i + i = 1 n b i

  4. i = 1 n ( a i b i ) = i = 1 n a i i = 1 n b i

  5. i = 1 n a i = i = 1 m a i + i = m + 1 n a i

Proof

We prove properties 2. and 3. here, and leave proof of the other properties to the Exercises.

2. We have

i = 1 n c a i = c a 1 + c a 2 + c a 3 + + c a n = c ( a 1 + a 2 + a 3 + + a n ) = c i = 1 n a i .

3. We have

i = 1 n ( a i + b i ) = ( a 1 + b 1 ) + ( a 2 + b 2 ) + ( a 3 + b 3 ) + + ( a n + b n ) = ( a 1 + a 2 + a 3 + + a n ) + ( b 1 + b 2 + b 3 + + b n ) = i = 1 n a i + i = 1 n b i .

A few more formulas for frequently found functions simplify the summation process further. These are shown in the next rule, for sums and powers of integers , and we use them in the next set of examples.

Rule: sums and powers of integers

  1. The sum of n integers is given by
    i = 1 n i = 1 + 2 + + n = n ( n + 1 ) 2 .
  2. The sum of consecutive integers squared is given by
    i = 1 n i 2 = 1 2 + 2 2 + + n 2 = n ( n + 1 ) ( 2 n + 1 ) 6 .
  3. The sum of consecutive integers cubed is given by
    i = 1 n i 3 = 1 3 + 2 3 + + n 3 = n 2 ( n + 1 ) 2 4 .

Evaluation using sigma notation

Write using sigma notation and evaluate:

  1. The sum of the terms ( i 3 ) 2 for i = 1 , 2 ,…, 200 .
  2. The sum of the terms ( i 3 i 2 ) for i = 1 , 2 , 3 , 4 , 5 , 6 .
  1. Multiplying out ( i 3 ) 2 , we can break the expression into three terms.
    i = 1 200 ( i 3 ) 2 = i = 1 200 ( i 2 6 i + 9 ) = i = 1 200 i 2 i = 1 200 6 i + i = 1 200 9 = i = 1 200 i 2 6 i = 1 200 i + i = 1 200 9 = 200 ( 200 + 1 ) ( 400 + 1 ) 6 6 [ 200 ( 200 + 1 ) 2 ] + 9 ( 200 ) = 2,686,700 120,600 + 1800 = 2,567,900
  2. Use sigma notation property iv. and the rules for the sum of squared terms and the sum of cubed terms.
    i = 1 6 ( i 3 i 2 ) = i = 1 6 i 3 i = 1 6 i 2 = 6 2 ( 6 + 1 ) 2 4 6 ( 6 + 1 ) ( 2 ( 6 ) + 1 ) 6 = 1764 4 546 6 = 350
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Find the sum of the values of 4 + 3 i for i = 1 , 2 ,…, 100 .

15,550

Got questions? Get instant answers now!

Finding the sum of the function values

Find the sum of the values of f ( x ) = x 3 over the integers 1 , 2 , 3 ,…, 10 .

Using the formula, we have

i = 0 10 i 3 = ( 10 ) 2 ( 10 + 1 ) 2 4 = 100 ( 121 ) 4 = 3025.
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Evaluate the sum indicated by the notation k = 1 20 ( 2 k + 1 ) .

440

Got questions? Get instant answers now!

Approximating area

Now that we have the necessary notation, we return to the problem at hand: approximating the area under a curve. Let f ( x ) be a continuous, nonnegative function defined on the closed interval [ a , b ] . We want to approximate the area A bounded by f ( x ) above, the x -axis below, the line x = a on the left, and the line x = b on the right ( [link] ).

A graph in quadrant one of an area bounded by a generic curve f(x) at the top, the x-axis at the bottom, the line x = a to the left, and the line x = b to the right. About midway through, the concavity switches from concave down to concave up, and the function starts to increases shortly before the line x = b.
An area (shaded region) bounded by the curve f ( x ) at top, the x -axis at bottom, the line x = a to the left, and the line x = b at right.

How do we approximate the area under this curve? The approach is a geometric one. By dividing a region into many small shapes that have known area formulas, we can sum these areas and obtain a reasonable estimate of the true area. We begin by dividing the interval [ a , b ] into n subintervals of equal width, b a n . We do this by selecting equally spaced points x 0 , x 1 , x 2 ,…, x n with x 0 = a , x n = b , and

x i x i 1 = b a n

for i = 1 , 2 , 3 ,…, n .

We denote the width of each subinterval with the notation Δ x , so Δ x = b a n and

x i = x 0 + i Δ x

Questions & Answers

what is defense mechanism
Chinaza Reply
what is defense mechanisms
Chinaza
I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 8

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Calculus volume 1. OpenStax CNX. Feb 05, 2016 Download for free at http://cnx.org/content/col11964/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Calculus volume 1' conversation and receive update notifications?

Ask