<< Chapter < Page Chapter >> Page >
  • Explain how the sign of the first derivative affects the shape of a function’s graph.
  • State the first derivative test for critical points.
  • Use concavity and inflection points to explain how the sign of the second derivative affects the shape of a function’s graph.
  • Explain the concavity test for a function over an open interval.
  • Explain the relationship between a function and its first and second derivatives.
  • State the second derivative test for local extrema.

Earlier in this chapter we stated that if a function f has a local extremum at a point c , then c must be a critical point of f . However, a function is not guaranteed to have a local extremum at a critical point. For example, f ( x ) = x 3 has a critical point at x = 0 since f ( x ) = 3 x 2 is zero at x = 0 , but f does not have a local extremum at x = 0 . Using the results from the previous section, we are now able to determine whether a critical point of a function actually corresponds to a local extreme value. In this section, we also see how the second derivative provides information about the shape of a graph by describing whether the graph of a function curves upward or curves downward.

The first derivative test

Corollary 3 of the Mean Value Theorem showed that if the derivative of a function is positive over an interval I then the function is increasing over I . On the other hand, if the derivative of the function is negative over an interval I , then the function is decreasing over I as shown in the following figure.

This figure is broken into four figures labeled a, b, c, and d. Figure a shows a function increasing convexly from (a, f(a)) to (b, f(b)). At two points the derivative is taken and it is noted that at both f’ > 0. In other words, f is increasing. Figure b shows a function increasing concavely from (a, f(a)) to (b, f(b)). At two points the derivative is taken and it is noted that at both f’ > 0. In other words, f is increasing. Figure c shows a function decreasing concavely from (a, f(a)) to (b, f(b)). At two points the derivative is taken and it is noted that at both f’ < 0. In other words, f is decreasing. Figure d shows a function decreasing convexly from (a, f(a)) to (b, f(b)). At two points the derivative is taken and it is noted that at both f’ < 0. In other words, f is decreasing.
Both functions are increasing over the interval ( a , b ) . At each point x , the derivative f ( x ) > 0 . Both functions are decreasing over the interval ( a , b ) . At each point x , the derivative f ( x ) < 0 .

A continuous function f has a local maximum at point c if and only if f switches from increasing to decreasing at point c . Similarly, f has a local minimum at c if and only if f switches from decreasing to increasing at c . If f is a continuous function over an interval I containing c and differentiable over I , except possibly at c , the only way f can switch from increasing to decreasing (or vice versa) at point c is if f changes sign as x increases through c . If f is differentiable at c , the only way that f . can change sign as x increases through c is if f ( c ) = 0 . Therefore, for a function f that is continuous over an interval I containing c and differentiable over I , except possibly at c , the only way f can switch from increasing to decreasing (or vice versa) is if f ( c ) = 0 or f ( c ) is undefined. Consequently, to locate local extrema for a function f , we look for points c in the domain of f such that f ( c ) = 0 or f ( c ) is undefined. Recall that such points are called critical points of f .

Note that f need not have a local extrema at a critical point. The critical points are candidates for local extrema only. In [link] , we show that if a continuous function f has a local extremum, it must occur at a critical point, but a function may not have a local extremum at a critical point. We show that if f has a local extremum at a critical point, then the sign of f switches as x increases through that point.

A function f(x) is graphed. It starts in the second quadrant and increases to x = a, which is too sharp and hence f’(a) is undefined. In this section f’ > 0. Then, f decreases from x = a to x = b (so f’ < 0 here), before increasing at x = b. It is noted that f’(b) = 0. While increasing from x = b to x = c, f’ > 0. The function has an inversion point at c, and it is marked f’(c) = 0. The function increases some more to d (so f’ > 0), which is the global maximum. It is marked that f’(d) = 0. Then the function decreases and it is marked that f’ > 0.
The function f has four critical points: a , b , c , and d . The function f has local maxima at a and d , and a local minimum at b . The function f does not have a local extremum at c . The sign of f changes at all local extrema.

Questions & Answers

what is microbiology
Agebe Reply
What is a cell
Odelana Reply
what is cell
Mohammed
how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 7

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Calculus volume 1. OpenStax CNX. Feb 05, 2016 Download for free at http://cnx.org/content/col11964/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Calculus volume 1' conversation and receive update notifications?

Ask