<< Chapter < Page Chapter >> Page >

Learning objectives

By the end of this section, you will be able to:

  • Explain how the thick atmosphere of Titan makes bodies of liquid on its surface possible
  • Describe what we learned from the landing on Titan with the Huygens probe
  • Discuss the features we observed on the surface of Triton when Voyager 2 flew by

We shift our attention now to small worlds in the more distant parts of the solar system. Saturn ’s large moon Titan turns out to be a weird cousin of Earth, with many similarities in spite of frigid temperatures. The Cassini observations of Titan have provided some of the most exciting recent discoveries in planetary science. Neptune’s moon Triton also has unusual characteristics and resembles Pluto, which we will discuss in the following section.

Titan, a moon with atmosphere and hydrocarbon lakes

Titan , first seen in 1655 by the Dutch astronomer Christiaan Huygens, was the first moon discovered after Galileo saw the four large moons of Jupiter. Titan has roughly the same diameter, mass, and density as Callisto or Ganymede. Presumably it also has a similar composition—about half ice and half rock. However, Titan is unique among moons, with a thick atmosphere and lakes and rivers and falling rain (although these are not composed of water but of hydrocarbons such as ethane and methane, which can stay liquid at the frigid temperatures on Titan).

The 1980 Voyager flyby of Titan determined that the surface density of its atmosphere is four times greater than that on Earth. The atmospheric pressure on this moon is 1.6 bars, higher than that on any other moon and, remarkably, even higher than that of the terrestrial planets Mars and Earth. The atmospheric composition is primarily nitrogen, an important way in which Titan’s atmosphere resembles Earth’s.

Also detected in Titan’s atmosphere were carbon monoxide (CO), hydrocarbons (compounds of hydrogen and carbon) such as methane (CH 4 ), ethane (C 2 H 6 ), and propane (C 3 H 8 ), and nitrogen compounds such as hydrogen cyanide (HCN), cyanogen (C 2 N 2 ), and cyanoacetylene (HC 3 N). Their presence indicates an active chemistry in which sunlight interacts with atmospheric nitrogen and methane to create a rich mix of organic molecules. There are also multiple layers of hydrocarbon haze and clouds in the atmosphere, as illustrated in [link] .

Structure of titan’s atmosphere.

A graph of the structure of Titan’s atmosphere. The x-axis is labeled “Temperature (K)” and ranges from 0 at the origin to 180. The y-axis is labeled “Height above Titan’s Surface (km)” and ranges from 0 to 600. The left side of the graph is labeled “Pressure (bar)” and ranges from 1.6 to 10 to the negative 5. A red line labeled “Temperature” starts at approximately 90 K, 0 km, and 1.6 bar, moves leftward to around 20 K, 80 km, and 1 bar, then increases exponentially to the right, ending at approximately 160 K, 600 km, and 10 to the negative 5 bar. The background of the graph shows the different layers of the atmosphere, and is labeled “methane or ethane” at approximately 100 km, “Particulate rain?” at approximately 270 km, “Thick photochemical haze” at approximately 320 km, N_2 CH_4 at approximately 430 km, and “thin haze layer” at approximately 550 km.
Some characteristics of Titan’s atmosphere resemble those of Earth’s atmosphere, although it is much colder than our planet. The red line indicates the temperature of Titan’s atmosphere at different altitudes.

These Voyager discoveries motivated a much more ambitious exploration program using the NASA Cassini Saturn orbiter and a probe to land on Titan called Huygens, built by the European Space Agency. The orbiter, which included several cameras, spectrometers, and a radar imaging system, made dozens of close flybys of Titan between 2004 and 2015, each yielding radar and infrared images of portions of the surface (see Exploring the Outer Planets ). The Huygens probe successfully descended by parachute through the atmosphere, photographing the surface from below the clouds, and landing on January 14, 2005. This was the first (and so far the only) spacecraft landing on a moon in the outer solar system.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Astronomy. OpenStax CNX. Apr 12, 2017 Download for free at http://cnx.org/content/col11992/1.13
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Astronomy' conversation and receive update notifications?

Ask