<< Chapter < Page Chapter >> Page >

External and internal views of base of skull

This image shows the superior and inferior view of the skull base. In the top panel, the inferior view is shown. A small image of the skull shows the viewing direction on the left. In the inferior view, the maxilla and the associated bones are shown. In the bottom panel, the superior view shows the ethmoid and sphenoid bones and their subparts.
(a) The hard palate is formed anteriorly by the palatine processes of the maxilla bones and posteriorly by the horizontal plate of the palatine bones. (b) The complex floor of the cranial cavity is formed by the frontal, ethmoid, sphenoid, temporal, and occipital bones. The lesser wing of the sphenoid bone separates the anterior and middle cranial fossae. The petrous ridge (petrous portion of temporal bone) separates the middle and posterior cranial fossae.

Frontal bone

The frontal bone    is the single bone that forms the forehead. At its anterior midline, between the eyebrows, there is a slight depression called the glabella    (see [link] ). The frontal bone also forms the supraorbital margin of the orbit. Near the middle of this margin, is the supraorbital foramen, the opening that provides passage for a sensory nerve to the forehead. The frontal bone is thickened just above each supraorbital margin, forming rounded brow ridges. These are located just behind your eyebrows and vary in size among individuals, although they are generally larger in males. Inside the cranial cavity, the frontal bone extends posteriorly. This flattened region forms both the roof of the orbit below and the floor of the anterior cranial cavity above (see [link] b ).

Occipital bone

The occipital bone    is the single bone that forms the posterior skull and posterior base of the cranial cavity ( [link] ; see also [link] ). On its outside surface, at the posterior midline, is a small protrusion called the external occipital protuberance    , which serves as an attachment site for a ligament of the posterior neck. Lateral to either side of this bump is a superior nuchal line    (nuchal = “nape” or “posterior neck”). The nuchal lines represent the most superior point at which muscles of the neck attach to the skull, with only the scalp covering the skull above these lines. On the base of the skull, the occipital bone contains the large opening of the foramen magnum    , which allows for passage of the spinal cord as it exits the skull. On either side of the foramen magnum is an oval-shaped occipital condyle    . These condyles form joints with the first cervical vertebra and thus support the skull on top of the vertebral column.

Posterior view of skull

This figure shows the posterior view of the skull and the major parts are labeled.
This view of the posterior skull shows attachment sites for muscles and joints that support the skull.

Sphenoid bone

The sphenoid bone    is a single, complex bone of the central skull ( [link] ). It serves as a “keystone” bone, because it joins with almost every other bone of the skull. The sphenoid forms much of the base of the central skull (see [link] ) and also extends laterally to contribute to the sides of the skull (see [link] ). Inside the cranial cavity, the right and left lesser wings of the sphenoid bone    , which resemble the wings of a flying bird, form the lip of a prominent ridge that marks the boundary between the anterior and middle cranial fossae. The sella turcica    (“Turkish saddle”) is located at the midline of the middle cranial fossa. This bony region of the sphenoid bone is named for its resemblance to the horse saddles used by the Ottoman Turks, with a high back and a tall front. The rounded depression in the floor of the sella turcica is the hypophyseal (pituitary) fossa    , which houses the pea-sized pituitary (hypophyseal) gland. The greater wings of the sphenoid bone extend laterally to either side away from the sella turcica, where they form the anterior floor of the middle cranial fossa. The greater wing is best seen on the outside of the lateral skull, where it forms a rectangular area immediately anterior to the squamous portion of the temporal bone.

Questions & Answers

which part of the brain that controls human body
Mozanto Reply
describe the stage of eghopoisis
alupe Reply
what is a blood vessels
Sani Reply
what is plasma and is component
Fad Reply
what is the anterior
Tito Reply
Means front part of the body
Ibrahim
what is anatomy
Ruth Reply
describe the stage of ehopoisis
alupe
To better understand how the different part of the body works. To understand the physiology of the various structures in the body. To differentiate the systems of the human body .
Roseann Reply
what is hypogelersomia
aliyu Reply
what are the parts of the female reproductive system?
Orji Reply
what is anatomy
Divinefavour Reply
what are the six types of synovial joints and their ligaments
Darlington Reply
draw the six types of synovial joint and their ligaments
Darlington
System of human beings
Katumi Reply
System in humans body
Katumi
Diagram of animals and plants cell
Favour Reply
at what age does development of bone end
Alal Reply
how many bones are in the human upper layers
Daniel Reply
how many bones do we have
Nbeke

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Anatomy & Physiology. OpenStax CNX. Feb 04, 2016 Download for free at http://legacy.cnx.org/content/col11496/1.8
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Anatomy & Physiology' conversation and receive update notifications?

Ask