<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Square a binomial using the Binomial Squares Pattern
  • Multiply conjugates using the Product of Conjugates Pattern
  • Recognize and use the appropriate special product pattern

Before you get started, take this readiness quiz.

  1. Simplify: 9 2 ( −9 ) 2 9 2 .
    If you missed this problem, review [link] .

Square a binomial using the binomial squares pattern

Mathematicians like to look for patterns that will make their work easier. A good example of this is squaring binomials. While you can always get the product by writing the binomial    twice and using the methods of the last section, there is less work to do if you learn to use a pattern.

Let’s start by looking at ( x + 9 ) 2 . What does this mean? ( x + 9 ) 2 It means to multiply ( x + 9 ) by itself. ( x + 9 ) ( x + 9 ) Then, using FOIL, we get: x 2 + 9 x + 9 x + 81 Combining like terms gives: x 2 + 18 x + 81 Here’s another one: ( y 7 ) 2 Multiply ( y 7 ) by itself. ( y 7 ) ( y 7 ) Using FOIL, we get: y 2 7 y 7 y + 49 And combining like terms: y 2 14 y + 49 And one more: ( 2 x + 3 ) 2 Multiply. ( 2 x + 3 ) ( 2 x + 3 ) Use FOIL: 4 x 2 + 6 x + 6 x + 9 Combine like terms. 4 x 2 + 12 x + 9

Look at these results. Do you see any patterns?

What about the number of terms? In each example we squared a binomial and the result was a trinomial    .

( a + b ) 2 = ____ + ____ + ____

Now look at the first term in each result. Where did it come from?

This figure has three columns. The first column contains the expression x plus 9, in parentheses, squared. Below this is the product of x plus 9 and x plus 9. Below this is x squared plus 9x plus 9x plus 81. Below this is x squared plus 18x plus 81. The second column contains the expression y minus 7, in parentheses, squared. Below this is the product of y minus 7 and y minus 7. Below this is y squared minus 7y minus 7y plus 49. Below this is the expression y squared minus 14y plus 49. The third column contains the expression 2x plus 3, in parentheses, squared. Below this is the product of 2x plus 3 and 2x plus 3. Below this is 4x squared plus 6x plus 6x plus 9. Below this is 4x squared plus 12x plus 9.

The first term is the product of the first terms of each binomial. Since the binomials are identical, it is just the square of the first term!

( a + b ) 2 = a 2 + ____ + ____

To get the first term of the product, square the first term .

Where did the last term come from? Look at the examples and find the pattern.

The last term is the product of the last terms, which is the square of the last term.

( a + b ) 2 = ____ + ____ + b 2

To get the last term of the product, square the last term .

Finally, look at the middle term . Notice it came from adding the “outer” and the “inner” terms—which are both the same! So the middle term is double the product of the two terms of the binomial.

( a + b ) 2 = ____ + 2 a b + ____ ( a b ) 2 = ____ 2 a b + ____

To get the middle term of the product, multiply the terms and double their product .

Putting it all together:

Binomial squares pattern

If a and b are real numbers,

( a + b ) 2 = a 2 + 2 a b + b 2 ( a b ) 2 = a 2 2 a b + b 2
No Alt Text

To square a binomial:

  • square the first term
  • square the last term
  • double their product

A number example helps verify the pattern.

( 10 + 4 ) 2 Square the first term. 10 2 + ___ + ___ Square the last term. 10 2 + ___ + 4 2 Double their product. 10 2 + 2 · 10 · 4 + 4 2 Simplify. 100 + 80 + 16 Simplify. 196

To multiply ( 10 + 4 ) 2 usually you’d follow the Order of Operations.

( 10 + 4 ) 2 ( 14 ) 2 196

The pattern works!

Multiply: ( x + 5 ) 2 .

Solution

x plus 5, in parentheses, squared. Above the expression is the general formula a plus b, in parentheses, squared.
Square the first term. x squared plus blank plus blank. Above the expression is the general form a squared plus 2 a b plus b squared.
Square the last term. x squared plus blank plus 5 squared.
Double the product. x squared plus 2 times x times 5 plus 5 squared. Above this expression is the general formula a squared plus 2 times a times b plus b squared.
Simplify. x squared plus 10 x plus 25.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Multiply: ( x + 9 ) 2 .

x 2 + 18 x + 81

Got questions? Get instant answers now!

Multiply: ( y + 11 ) 2 .

y 2 + 22 y + 121

Got questions? Get instant answers now!

Multiply: ( y 3 ) 2 .

Solution

y minus 3, in parentheses, squared. Above the expression is the general formula a minus b, in parentheses, squared.
Square the first term. y squared minus blank plus blank. Above the expression is the general form a squared plus 2 a b plus b squared.
Square the last term. y squared minus blank plus 3 squared.
Double the product. y squared minus y times y times 3 plus 3 squared. Above this expression is the general formula a squared plus 2 times a times b plus b squared.
Simplify. y squared minus 6 y plus 9.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Multiply: ( x 9 ) 2 .

x 2 18 x + 81

Got questions? Get instant answers now!

Multiply: ( p 13 ) 2 .

p 2 26 p + 169

Got questions? Get instant answers now!

Multiply: ( 4 x + 6 ) 2 .

Solution

4 x plus 6, in parentheses, squared. Above the expression is the general formula a plus b, in parentheses, squared.
Use the pattern. 4 x squared plus 2 times 4 x times 6 plus 6 squared. Above this expression is the general formula a squared plus 2 times a times b plus b squared.
Simplify. 16 x squared plus 48 x plus 36.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Multiply: ( 6 x + 3 ) 2 .

36 x 2 + 36 x + 9

Got questions? Get instant answers now!

Multiply: ( 4 x + 9 ) 2 .

16 x 2 + 72 x + 81

Got questions? Get instant answers now!

Multiply: ( 2 x 3 y ) 2 .

Solution

contains 2 x minus 3 y, in parentheses, squared. Above the expression is the general formula a plus b, in parentheses, squared.
Use the pattern. 2 x squared minus 2 times 2 x times 3 y plus 3 y squared. Above this expression is the general formula a squared minus 2 times a times b plus b squared.
Simplify. 4 x squared minus 12 x y plus 9 y squared.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Multiply: ( 2 c d ) 2 .

4 c 2 4 c d + d 2

Got questions? Get instant answers now!

Multiply: ( 4 x 5 y ) 2 .

16 x 2 40 x y + 25 y 2

Got questions? Get instant answers now!

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 1

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Elementary algebra. OpenStax CNX. Jan 18, 2017 Download for free at http://cnx.org/content/col12116/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Elementary algebra' conversation and receive update notifications?

Ask