<< Chapter < Page Chapter >> Page >
  • Introduce x 5 , and then for each successive term reduce the exponent on x by 1 until x 0 = 1 is reached.
  • Introduce y 0 = 1 , and then increase the exponent on y by 1 until y 5 is reached.
    x 5 , x 4 y , x 3 y 2 , x 2 y 3 , x y 4 , y 5

The next expansion would be

( x + y ) 5 = x 5 + 5 x 4 y + 10 x 3 y 2 + 10 x 2 y 3 + 5 x y 4 + y 5 .

But where do those coefficients come from? The binomial coefficients are symmetric. We can see these coefficients in an array known as Pascal's Triangle , shown in [link] .

Pascal's Triangle

To generate Pascal’s Triangle, we start by writing a 1. In the row below, row 2, we write two 1’s. In the 3 rd row, flank the ends of the rows with 1’s, and add 1 + 1 to find the middle number, 2. In the n th row, flank the ends of the row with 1’s. Each element in the triangle is the sum of the two elements immediately above it.

To see the connection between Pascal’s Triangle and binomial coefficients, let us revisit the expansion of the binomials in general form.

Pascal's Triangle expanded to show the values of the triangle as x and y terms with exponents

The binomial theorem

The Binomial Theorem    is a formula that can be used to expand any binomial.

( x + y ) n = k = 0 n ( n k ) x n k y k = x n + ( n 1 ) x n 1 y + ( n 2 ) x n 2 y 2 + ... + ( n n 1 ) x y n 1 + y n

Given a binomial, write it in expanded form.

  1. Determine the value of n according to the exponent.
  2. Evaluate the k = 0 through k = n using the Binomial Theorem formula.
  3. Simplify.

Expanding a binomial

Write in expanded form.

  1. ( x + y ) 5
  2. ( 3 x y ) 4
  1. Substitute n = 5 into the formula. Evaluate the k = 0 through k = 5 terms. Simplify.
    ( x + y ) 5 = ( 5 0 ) x 5 y 0 + ( 5 1 ) x 4 y 1 + ( 5 2 ) x 3 y 2 + ( 5 3 ) x 2 y 3 + ( 5 4 ) x 1 y 4 + ( 5 5 ) x 0 y 5 ( x + y ) 5 = x 5 + 5 x 4 y + 10 x 3 y 2 + 10 x 2 y 3 + 5 x y 4 + y 5
  2. Substitute n = 4 into the formula. Evaluate the k = 0 through k = 4 terms. Notice that 3 x is in the place that was occupied by x and that y is in the place that was occupied by y . So we substitute them. Simplify.
    ( 3 x y ) 4 = ( 4 0 ) ( 3 x ) 4 ( y ) 0 + ( 4 1 ) ( 3 x ) 3 ( y ) 1 + ( 4 2 ) ( 3 x ) 2 ( y ) 2 + ( 4 3 ) ( 3 x ) 1 ( y ) 3 + ( 4 4 ) ( 3 x ) 0 ( y ) 4 ( 3 x y ) 4 = 81 x 4 108 x 3 y + 54 x 2 y 2 12 x y 3 + y 4
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Write in expanded form.

  1. ( x y ) 5
  2. ( 2 x + 5 y ) 3
  1. x 5 5 x 4 y + 10 x 3 y 2 10 x 2 y 3 + 5 x y 4 y 5
  2. 8 x 3 + 60 x 2 y + 150 x y 2 + 125 y 3
Got questions? Get instant answers now!

Using the binomial theorem to find a single term

Expanding a binomial with a high exponent such as ( x + 2 y ) 16 can be a lengthy process.

Sometimes we are interested only in a certain term of a binomial expansion. We do not need to fully expand a binomial to find a single specific term.

Note the pattern of coefficients in the expansion of ( x + y ) 5 .

( x + y ) 5 = x 5 + ( 5 1 ) x 4 y + ( 5 2 ) x 3 y 2 + ( 5 3 ) x 2 y 3 + ( 5 4 ) x y 4 + y 5

The second term is ( 5 1 ) x 4 y . The third term is ( 5 2 ) x 3 y 2 . We can generalize this result.

( n r ) x n r y r

The (r+1)th term of a binomial expansion

The ( r + 1 ) th term of the binomial expansion    of ( x + y ) n is:

( n r ) x n r y r

Given a binomial, write a specific term without fully expanding.

  1. Determine the value of n according to the exponent.
  2. Determine ( r + 1 ) .
  3. Determine r .
  4. Replace r in the formula for the ( r + 1 ) th term of the binomial expansion.

Writing a given term of a binomial expansion

Find the tenth term of ( x + 2 y ) 16 without fully expanding the binomial.

Because we are looking for the tenth term, r + 1 = 10 , we will use r = 9 in our calculations.

( n r ) x n r y r
( 16 9 ) x 16 9 ( 2 y ) 9 = 5 , 857 , 280 x 7 y 9
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Find the sixth term of ( 3 x y ) 9 without fully expanding the binomial.

10 , 206 x 4 y 5

Got questions? Get instant answers now!

Access these online resources for additional instruction and practice with binomial expansion.

Questions & Answers

what is defense mechanism
Chinaza Reply
what is defense mechanisms
Chinaza
I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College algebra. OpenStax CNX. Feb 06, 2015 Download for free at https://legacy.cnx.org/content/col11759/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College algebra' conversation and receive update notifications?

Ask