<< Chapter < Page Chapter >> Page >
  • Introduce x 5 , and then for each successive term reduce the exponent on x by 1 until x 0 = 1 is reached.
  • Introduce y 0 = 1 , and then increase the exponent on y by 1 until y 5 is reached.
    x 5 , x 4 y , x 3 y 2 , x 2 y 3 , x y 4 , y 5

The next expansion would be

( x + y ) 5 = x 5 + 5 x 4 y + 10 x 3 y 2 + 10 x 2 y 3 + 5 x y 4 + y 5 .

But where do those coefficients come from? The binomial coefficients are symmetric. We can see these coefficients in an array known as Pascal's Triangle , shown in [link] .

Pascal's Triangle

To generate Pascal’s Triangle, we start by writing a 1. In the row below, row 2, we write two 1’s. In the 3 rd row, flank the ends of the rows with 1’s, and add 1 + 1 to find the middle number, 2. In the n th row, flank the ends of the row with 1’s. Each element in the triangle is the sum of the two elements immediately above it.

To see the connection between Pascal’s Triangle and binomial coefficients, let us revisit the expansion of the binomials in general form.

Pascal's Triangle expanded to show the values of the triangle as x and y terms with exponents

The binomial theorem

The Binomial Theorem    is a formula that can be used to expand any binomial.

( x + y ) n = k = 0 n ( n k ) x n k y k = x n + ( n 1 ) x n 1 y + ( n 2 ) x n 2 y 2 + ... + ( n n 1 ) x y n 1 + y n

Given a binomial, write it in expanded form.

  1. Determine the value of n according to the exponent.
  2. Evaluate the k = 0 through k = n using the Binomial Theorem formula.
  3. Simplify.

Expanding a binomial

Write in expanded form.

  1. ( x + y ) 5
  2. ( 3 x y ) 4
  1. Substitute n = 5 into the formula. Evaluate the k = 0 through k = 5 terms. Simplify.
    ( x + y ) 5 = ( 5 0 ) x 5 y 0 + ( 5 1 ) x 4 y 1 + ( 5 2 ) x 3 y 2 + ( 5 3 ) x 2 y 3 + ( 5 4 ) x 1 y 4 + ( 5 5 ) x 0 y 5 ( x + y ) 5 = x 5 + 5 x 4 y + 10 x 3 y 2 + 10 x 2 y 3 + 5 x y 4 + y 5
  2. Substitute n = 4 into the formula. Evaluate the k = 0 through k = 4 terms. Notice that 3 x is in the place that was occupied by x and that y is in the place that was occupied by y . So we substitute them. Simplify.
    ( 3 x y ) 4 = ( 4 0 ) ( 3 x ) 4 ( y ) 0 + ( 4 1 ) ( 3 x ) 3 ( y ) 1 + ( 4 2 ) ( 3 x ) 2 ( y ) 2 + ( 4 3 ) ( 3 x ) 1 ( y ) 3 + ( 4 4 ) ( 3 x ) 0 ( y ) 4 ( 3 x y ) 4 = 81 x 4 108 x 3 y + 54 x 2 y 2 12 x y 3 + y 4
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Write in expanded form.

  1. ( x y ) 5
  2. ( 2 x + 5 y ) 3
  1. x 5 5 x 4 y + 10 x 3 y 2 10 x 2 y 3 + 5 x y 4 y 5
  2. 8 x 3 + 60 x 2 y + 150 x y 2 + 125 y 3
Got questions? Get instant answers now!

Using the binomial theorem to find a single term

Expanding a binomial with a high exponent such as ( x + 2 y ) 16 can be a lengthy process.

Sometimes we are interested only in a certain term of a binomial expansion. We do not need to fully expand a binomial to find a single specific term.

Note the pattern of coefficients in the expansion of ( x + y ) 5 .

( x + y ) 5 = x 5 + ( 5 1 ) x 4 y + ( 5 2 ) x 3 y 2 + ( 5 3 ) x 2 y 3 + ( 5 4 ) x y 4 + y 5

The second term is ( 5 1 ) x 4 y . The third term is ( 5 2 ) x 3 y 2 . We can generalize this result.

( n r ) x n r y r

The (r+1)th term of a binomial expansion

The ( r + 1 ) th term of the binomial expansion    of ( x + y ) n is:

( n r ) x n r y r

Given a binomial, write a specific term without fully expanding.

  1. Determine the value of n according to the exponent.
  2. Determine ( r + 1 ) .
  3. Determine r .
  4. Replace r in the formula for the ( r + 1 ) th term of the binomial expansion.

Writing a given term of a binomial expansion

Find the tenth term of ( x + 2 y ) 16 without fully expanding the binomial.

Because we are looking for the tenth term, r + 1 = 10 , we will use r = 9 in our calculations.

( n r ) x n r y r
( 16 9 ) x 16 9 ( 2 y ) 9 = 5 , 857 , 280 x 7 y 9
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Find the sixth term of ( 3 x y ) 9 without fully expanding the binomial.

10 , 206 x 4 y 5

Got questions? Get instant answers now!

Access these online resources for additional instruction and practice with binomial expansion.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College algebra. OpenStax CNX. Feb 06, 2015 Download for free at https://legacy.cnx.org/content/col11759/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College algebra' conversation and receive update notifications?

Ask