<< Chapter < Page Chapter >> Page >

Decomposing a rational function with a repeated irreducible quadratic factor in the denominator

Decompose the given expression that has a repeated irreducible factor in the denominator.

x 4 + x 3 + x 2 x + 1 x ( x 2 + 1 ) 2

The factors of the denominator are x , ( x 2 + 1 ) , and ( x 2 + 1 ) 2 . Recall that, when a factor in the denominator is a quadratic that includes at least two terms, the numerator must be of the linear form A x + B . So, let’s begin the decomposition.

x 4 + x 3 + x 2 x + 1 x ( x 2 + 1 ) 2 = A x + B x + C ( x 2 + 1 ) + D x + E ( x 2 + 1 ) 2

We eliminate the denominators by multiplying each term by x ( x 2 + 1 ) 2 . Thus,

x 4 + x 3 + x 2 x + 1 = A ( x 2 + 1 ) 2 + ( B x + C ) ( x ) ( x 2 + 1 ) + ( D x + E ) ( x )

Expand the right side.

       x 4 + x 3 + x 2 x + 1 = A ( x 4 + 2 x 2 + 1 ) + B x 4 + B x 2 + C x 3 + C x + D x 2 + E x                                         = A x 4 + 2 A x 2 + A + B x 4 + B x 2 + C x 3 + C x + D x 2 + E x

Now we will collect like terms.

x 4 + x 3 + x 2 x + 1 = ( A + B ) x 4 + ( C ) x 3 + ( 2 A + B + D ) x 2 + ( C + E ) x + A

Set up the system of equations matching corresponding coefficients on each side of the equal sign.

          A + B = 1                  C = 1 2 A + B + D = 1           C + E = −1                  A = 1

We can use substitution from this point. Substitute A = 1 into the first equation.

1 + B = 1         B = 0

Substitute A = 1 and B = 0 into the third equation.

2 ( 1 ) + 0 + D = 1                    D = −1

Substitute C = 1 into the fourth equation.

1 + E = −1        E = −2

Now we have solved for all of the unknowns on the right side of the equal sign. We have A = 1 , B = 0 , C = 1 , D = −1 , and E = −2. We can write the decomposition as follows:

x 4 + x 3 + x 2 x + 1 x ( x 2 + 1 ) 2 = 1 x + 1 ( x 2 + 1 ) x + 2 ( x 2 + 1 ) 2
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Find the partial fraction decomposition of the expression with a repeated irreducible quadratic factor.

x 3 −4 x 2 + 9 x −5 ( x 2 −2 x + 3 ) 2

x −2 x 2 −2 x + 3 + 2 x + 1 ( x 2 −2 x + 3 ) 2

Got questions? Get instant answers now!

Access these online resources for additional instruction and practice with partial fractions.

Key concepts

  • Decompose P ( x ) Q ( x ) by writing the partial fractions as A a 1 x + b 1 + B a 2 x + b 2 . Solve by clearing the fractions, expanding the right side, collecting like terms, and setting corresponding coefficients equal to each other, then setting up and solving a system of equations. See [link] .
  • The decomposition of P ( x ) Q ( x ) with repeated linear factors must account for the factors of the denominator in increasing powers. See [link] .
  • The decomposition of P ( x ) Q ( x ) with a nonrepeated irreducible quadratic factor needs a linear numerator over the quadratic factor, as in A x + B x + C ( a x 2 + b x + c ) . See [link] .
  • In the decomposition of P ( x ) Q ( x ) , where Q ( x ) has a repeated irreducible quadratic factor, when the irreducible quadratic factors are repeated, powers of the denominator factors must be represented in increasing powers as
    A x + B ( a x 2 + b x + c ) + A 2 x + B 2 ( a x 2 + b x + c ) 2 + + A n x + B n ( a x 2 + b x + c ) n .
    See [link] .

Section exercises

Verbal

Can any quotient of polynomials be decomposed into at least two partial fractions? If so, explain why, and if not, give an example of such a fraction

No, a quotient of polynomials can only be decomposed if the denominator can be factored. For example, 1 x 2 + 1 cannot be decomposed because the denominator cannot be factored.

Got questions? Get instant answers now!

Can you explain why a partial fraction decomposition is unique? (Hint: Think about it as a system of equations.)

Got questions? Get instant answers now!

Can you explain how to verify a partial fraction decomposition graphically?

Graph both sides and ensure they are equal.

Got questions? Get instant answers now!

You are unsure if you correctly decomposed the partial fraction correctly. Explain how you could double-check your answer.

Got questions? Get instant answers now!

Once you have a system of equations generated by the partial fraction decomposition, can you explain another method to solve it? For example if you had 7 x + 13 3 x 2 + 8 x + 15 = A x + 1 + B 3 x + 5 , we eventually simplify to 7 x + 13 = A ( 3 x + 5 ) + B ( x + 1 ) . Explain how you could intelligently choose an x -value that will eliminate either A or B and solve for A and B .

If we choose x = −1 , then the B -term disappears, letting us immediately know that A = 3. We could alternatively plug in x = 5 3 , giving us a B -value of −2.

Got questions? Get instant answers now!

Algebraic

For the following exercises, find the decomposition of the partial fraction for the nonrepeating linear factors.

5 x + 16 x 2 + 10 x + 24

Got questions? Get instant answers now!

3 x −79 x 2 −5 x −24

8 x + 3 5 x −8

Got questions? Get instant answers now!

x −24 x 2 −2 x −24

Got questions? Get instant answers now!

10 x + 47 x 2 + 7 x + 10

1 x + 5 + 9 x + 2

Got questions? Get instant answers now!

32 x −11 20 x 2 −13 x + 2

3 5 x −2 + 4 4 x −1

Got questions? Get instant answers now!

5 x x 2 −9

5 2 ( x + 3 ) + 5 2 ( x −3 )

Got questions? Get instant answers now!

6 x x 2 −4

3 x + 2 + 3 x −2

Got questions? Get instant answers now!

4 x −1 x 2 x −6

9 5 ( x + 2 ) + 11 5 ( x −3 )

Got questions? Get instant answers now!

3 x −1 x 2 −5 x + 6

8 x −3 5 x −2

Got questions? Get instant answers now!

For the following exercises, find the decomposition of the partial fraction for the repeating linear factors.

−5 x −19 ( x + 4 ) 2

Got questions? Get instant answers now!

x ( x −2 ) 2

1 x −2 + 2 ( x −2 ) 2

Got questions? Get instant answers now!

−24 x −27 ( 4 x + 5 ) 2

6 4 x + 5 + 3 ( 4 x + 5 ) 2

Got questions? Get instant answers now!

−24 x −27 ( 6 x −7 ) 2

Got questions? Get instant answers now!

5 x ( x −7 ) 2

1 x −7 2 ( x −7 ) 2

Got questions? Get instant answers now!

5 x + 14 2 x 2 + 12 x + 18

Got questions? Get instant answers now!

5 x 2 + 20 x + 8 2 x ( x + 1 ) 2

4 x 3 2 ( x + 1 ) + 7 2 ( x + 1 ) 2

Got questions? Get instant answers now!

4 x 2 + 55 x + 25 5 x ( 3 x + 5 ) 2

Got questions? Get instant answers now!

54 x 3 + 127 x 2 + 80 x + 16 2 x 2 ( 3 x + 2 ) 2

4 x + 2 x 2 3 3 x + 2 + 7 2 ( 3 x + 2 ) 2

Got questions? Get instant answers now!

x 3 −5 x 2 + 12 x + 144 x 2 ( x 2 + 12 x + 36 )

Got questions? Get instant answers now!

For the following exercises, find the decomposition of the partial fraction for the irreducible nonrepeating quadratic factor.

4 x 2 + 6 x + 11 ( x + 2 ) ( x 2 + x + 3 )

x + 1 x 2 + x + 3 + 3 x + 2

Got questions? Get instant answers now!

4 x 2 + 9 x + 23 ( x −1 ) ( x 2 + 6 x + 11 )

Got questions? Get instant answers now!

−2 x 2 + 10 x + 4 ( x −1 ) ( x 2 + 3 x + 8 )

4 −3 x x 2 + 3 x + 8 + 1 x −1

Got questions? Get instant answers now!

x 2 + 3 x + 1 ( x + 1 ) ( x 2 + 5 x −2 )

Got questions? Get instant answers now!

4 x 2 + 17 x −1 ( x + 3 ) ( x 2 + 6 x + 1 )

2 x −1 x 2 + 6 x + 1 + 2 x + 3

Got questions? Get instant answers now!

4 x 2 ( x + 5 ) ( x 2 + 7 x −5 )

Got questions? Get instant answers now!

4 x 2 + 5 x + 3 x 3 −1

1 x 2 + x + 1 + 4 x −1

Got questions? Get instant answers now!

−5 x 2 + 18 x −4 x 3 + 8

Got questions? Get instant answers now!

3 x 2 −7 x + 33 x 3 + 27

2 x 2 −3 x + 9 + 3 x + 3

Got questions? Get instant answers now!

x 2 + 2 x + 40 x 3 −125

Got questions? Get instant answers now!

4 x 2 + 4 x + 12 8 x 3 −27

1 4 x 2 + 6 x + 9 + 1 2 x −3

Got questions? Get instant answers now!

−50 x 2 + 5 x −3 125 x 3 −1

Got questions? Get instant answers now!

−2 x 3 −30 x 2 + 36 x + 216 x 4 + 216 x

1 x + 1 x + 6 4 x x 2 −6 x + 36

Got questions? Get instant answers now!

For the following exercises, find the decomposition of the partial fraction for the irreducible repeating quadratic factor.

3 x 3 + 2 x 2 + 14 x + 15 ( x 2 + 4 ) 2

Got questions? Get instant answers now!

x 3 + 6 x 2 + 5 x + 9 ( x 2 + 1 ) 2

x + 6 x 2 + 1 + 4 x + 3 ( x 2 + 1 ) 2

Got questions? Get instant answers now!

x 3 x 2 + x −1 ( x 2 −3 ) 2

Got questions? Get instant answers now!

x 2 + 5 x + 5 ( x + 2 ) 2

x + 1 x + 2 + 2 x + 3 ( x + 2 ) 2

Got questions? Get instant answers now!

x 3 + 2 x 2 + 4 x ( x 2 + 2 x + 9 ) 2

Got questions? Get instant answers now!

x 2 + 25 ( x 2 + 3 x + 25 ) 2

1 x 2 + 3 x + 25 3 x ( x 2 + 3 x + 25 ) 2

Got questions? Get instant answers now!

2 x 3 + 11 x + 7 x + 70 ( 2 x 2 + x + 14 ) 2

Got questions? Get instant answers now!

5 x + 2 x ( x 2 + 4 ) 2

1 8 x x 8 ( x 2 + 4 ) + 10 x 2 ( x 2 + 4 ) 2

Got questions? Get instant answers now!

x 4 + x 3 + 8 x 2 + 6 x + 36 x ( x 2 + 6 ) 2

Got questions? Get instant answers now!

2 x −9 ( x 2 x ) 2

16 x 9 x 2 + 16 x −1 7 ( x −1 ) 2

Got questions? Get instant answers now!

5 x 3 −2 x + 1 ( x 2 + 2 x ) 2

Got questions? Get instant answers now!

Extensions

For the following exercises, find the partial fraction expansion.

x 2 + 4 ( x + 1 ) 3

1 x + 1 2 ( x + 1 ) 2 + 5 ( x + 1 ) 3

Got questions? Get instant answers now!

x 3 −4 x 2 + 5 x + 4 ( x −2 ) 3

Got questions? Get instant answers now!

For the following exercises, perform the operation and then find the partial fraction decomposition.

7 x + 8 + 5 x −2 x −1 x 2 −6 x −16

5 x −2 3 10 ( x + 2 ) + 7 x + 8 7 10 ( x −8 )

Got questions? Get instant answers now!

1 x −4 3 x + 6 2 x + 7 x 2 + 2 x −24

Got questions? Get instant answers now!

2 x x 2 −16 1 −2 x x 2 + 6 x + 8 x −5 x 2 −4 x

5 4 x 5 2 ( x + 2 ) + 11 2 ( x + 4 ) + 5 4 ( x + 4 )

Got questions? Get instant answers now!

Questions & Answers

what is defense mechanism
Chinaza Reply
what is defense mechanisms
Chinaza
I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College algebra. OpenStax CNX. Feb 06, 2015 Download for free at https://legacy.cnx.org/content/col11759/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College algebra' conversation and receive update notifications?

Ask