<< Chapter < Page Chapter >> Page >

Rewriting equations so all powers have the same base

Sometimes the common base for an exponential equation is not explicitly shown. In these cases, we simply rewrite the terms in the equation as powers with a common base, and solve using the one-to-one property.

For example, consider the equation 256 = 4 x 5 . We can rewrite both sides of this equation as a power of 2. Then we apply the rules of exponents, along with the one-to-one property, to solve for x :

256 = 4 x 5 2 8 = ( 2 2 ) x 5 Rewrite each side as a power with base 2 . 2 8 = 2 2 x 10 Use the one-to-one property of exponents . 8 = 2 x 10 Apply the one-to-one property of exponents . 18 = 2 x Add 10 to both sides . x = 9 Divide by 2 .

Given an exponential equation with unlike bases, use the one-to-one property to solve it.

  1. Rewrite each side in the equation as a power with a common base.
  2. Use the rules of exponents to simplify, if necessary, so that the resulting equation has the form b S = b T .
  3. Use the one-to-one property to set the exponents equal.
  4. Solve the resulting equation, S = T , for the unknown.

Solving equations by rewriting them to have a common base

Solve 8 x + 2 = 16 x + 1 .

     8 x + 2 = 16 x + 1 ( 2 3 ) x + 2 = ( 2 4 ) x + 1 Write   8  and  16  as powers of   2.     2 3 x + 6 = 2 4 x + 4 To take a power of a power, multiply exponents .     3 x + 6 = 4 x + 4 Use the one-to-one property to set the exponents equal .             x = 2 Solve for  x .
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Solve 5 2 x = 25 3 x + 2 .

x = 1

Got questions? Get instant answers now!

Solving equations by rewriting roots with fractional exponents to have a common base

Solve 2 5 x = 2 .

2 5 x = 2 1 2 Write the square root of  2 as a power of   2. 5 x = 1 2 Use the one-to-one property . x = 1 10 Solve for  x .
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Solve 5 x = 5 .

x = 1 2

Got questions? Get instant answers now!

Do all exponential equations have a solution? If not, how can we tell if there is a solution during the problem-solving process?

No. Recall that the range of an exponential function is always positive. While solving the equation, we may obtain an expression that is undefined.

Solving an equation with positive and negative powers

Solve 3 x + 1 = −2.

This equation has no solution. There is no real value of x that will make the equation a true statement because any power of a positive number is positive.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Solve 2 x = −100.

The equation has no solution.

Got questions? Get instant answers now!

Solving exponential equations using logarithms

Sometimes the terms of an exponential equation cannot be rewritten with a common base. In these cases, we solve by taking the logarithm of each side. Recall, since log ( a ) = log ( b ) is equivalent to a = b , we may apply logarithms with the same base on both sides of an exponential equation.

Given an exponential equation in which a common base cannot be found, solve for the unknown.

  1. Apply the logarithm of both sides of the equation.
    • If one of the terms in the equation has base 10, use the common logarithm.
    • If none of the terms in the equation has base 10, use the natural logarithm.
  2. Use the rules of logarithms to solve for the unknown.

Solving an equation containing powers of different bases

Solve 5 x + 2 = 4 x .

           5 x + 2 = 4 x There is no easy way to get the powers to have the same base .          ln 5 x + 2 = ln 4 x Take ln of both sides .      ( x + 2 ) ln 5 = x ln 4 Use laws of logs .    x ln 5 + 2 ln 5 = x ln 4 Use the distributive law .    x ln 5 x ln 4 = 2 ln 5 Get terms containing  x  on one side, terms without  x  on the other . x ( ln 5 ln 4 ) = 2 ln 5 On the left hand side, factor out an  x .            x ln ( 5 4 ) = ln ( 1 25 ) Use the laws of logs .                    x = ln ( 1 25 ) ln ( 5 4 ) Divide by the coefficient of  x .
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 1

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask