<< Chapter < Page Chapter >> Page >
( 1 2 ) 10 = 1 1 , 024 ( 1 2 ) 20 = 1 1 , 048 , 576 ( 1 2 ) 30 = 1 1 , 073 , 741 , 824

As n gets very large, r n gets very small. We say that, as n increases without bound, r n approaches 0. As r n approaches 0, 1 r n approaches 1. When this happens, the numerator approaches a 1 . This give us a formula for the sum of an infinite geometric series.

Formula for the sum of an infinite geometric series

The formula for the sum of an infinite geometric series with −1 < r < 1 is

S = a 1 1 r

Given an infinite geometric series, find its sum.

  1. Identify a 1 and r .
  2. Confirm that 1 < r < 1.
  3. Substitute values for a 1 and r into the formula, S = a 1 1 r .
  4. Simplify to find S .

Finding the sum of an infinite geometric series

Find the sum, if it exists, for the following:

  1. 10 + 9 + 8 + 7 +
  2. 248.6 + 99.44 + 39.776 +  
  3. k = 1 4 , 374 ( 1 3 ) k 1
  4. k = 1 1 9 ( 4 3 ) k
  1. There is not a constant ratio; the series is not geometric.
  2. There is a constant ratio; the series is geometric. a 1 = 248.6 and r = 99.44 248.6 = 0.4 , so the sum exists. Substitute a 1 = 248.6 and r = 0.4 into the formula and simplify to find the sum:

    S = a 1 1 r S = 248.6 1 0.4 = 414. 3 ¯
  3. The formula is exponential, so the series is geometric with r = 1 3 . Find a 1 by substituting k = 1 into the given explicit formula:

    a 1 = 4 , 374 ( 1 3 ) 1 1 = 4 , 374

    Substitute a 1 = 4 , 374 and r = 1 3 into the formula, and simplify to find the sum:

    S = a 1 1 r S = 4 , 374 1 ( 1 3 ) = 3 , 280.5
  4. The formula is exponential, so the series is geometric, but r > 1. The sum does not exist.
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Finding an equivalent fraction for a repeating decimal

Find an equivalent fraction for the repeating decimal 0. 3 ¯

We notice the repeating decimal 0. 3 ¯ = 0.333... so we can rewrite the repeating decimal as a sum of terms.

0. 3 ¯ = 0.3 + 0.03 + 0.003 + ...

Looking for a pattern, we rewrite the sum, noticing that we see the first term multiplied to 0.1 in the second term, and the second term multiplied to 0.1 in the third term.

...

Notice the pattern; we multiply each consecutive term by a common ratio of 0.1 starting with the first term of 0.3. So, substituting into our formula for an infinite geometric sum, we have

S n = a 1 1 r = 0.3 1 0.1 = 0.3 0.9 = 1 3 .
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Find the sum, if it exists.

k = 1 0.76 k + 1

The series is not geometric.

Got questions? Get instant answers now!

k = 1 ( 3 8 ) k

3 11

Got questions? Get instant answers now!

Solving annuity problems

At the beginning of the section, we looked at a problem in which a couple invested a set amount of money each month into a college fund for six years. An annuity    is an investment in which the purchaser makes a sequence of periodic, equal payments. To find the amount of an annuity, we need to find the sum of all the payments and the interest earned. In the example, the couple invests $50 each month. This is the value of the initial deposit. The account paid 6% annual interest , compounded monthly. To find the interest rate per payment period, we need to divide the 6% annual percentage interest (APR) rate by 12. So the monthly interest rate is 0.5%. We can multiply the amount in the account each month by 100.5% to find the value of the account after interest has been added.

We can find the value of the annuity right after the last deposit by using a geometric series with a 1 = 50 and r = 100.5 % = 1.005. After the first deposit, the value of the annuity will be $50. Let us see if we can determine the amount in the college fund and the interest earned.

Questions & Answers

explain the basic method of power of power rule under indices.
Sumo Reply
Why is b in the answer
Dahsolar Reply
how do you work it out?
Brad Reply
answer
Ernest
heheheehe
Nitin
(Pcos∅+qsin∅)/(pcos∅-psin∅)
John Reply
how to do that?
Rosemary Reply
what is it about?
Amoah
how to answer the activity
Chabelita Reply
how to solve the activity
Chabelita
solve for X,,4^X-6(2^)-16=0
Alieu Reply
x4xminus 2
Lominate
sobhan Singh jina uniwarcity tignomatry ka long answers tile questions
harish Reply
t he silly nut company makes two mixtures of nuts: mixture a and mixture b. a pound of mixture a contains 12 oz of peanuts, 3 oz of almonds and 1 oz of cashews and sells for $4. a pound of mixture b contains 12 oz of peanuts, 2 oz of almonds and 2 oz of cashews and sells for $5. the company has 1080
ZAHRO Reply
If  , , are the roots of the equation 3 2 0, x px qx r     Find the value of 1  .
Swetha Reply
Parts of a pole were painted red, blue and yellow. 3/5 of the pole was red and 7/8 was painted blue. What part was painted yellow?
Patrick Reply
Parts of the pole was painted red, blue and yellow. 3 /5 of the pole was red and 7 /8 was painted blue. What part was painted yellow?
Patrick
how I can simplify algebraic expressions
Katleho Reply
Lairene and Mae are joking that their combined ages equal Sam’s age. If Lairene is twice Mae’s age and Sam is 69 yrs old, what are Lairene’s and Mae’s ages?
Mary Reply
23yrs
Yeboah
lairenea's age is 23yrs
ACKA
hy
Katleho
Ello everyone
Katleho
Laurene is 46 yrs and Mae is 23 is
Solomon
hey people
christopher
age does not matter
christopher
solve for X, 4^x-6(2*)-16=0
Alieu
prove`x^3-3x-2cosA=0 (-π<A<=π
Mayank Reply
create a lesson plan about this lesson
Rose Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask